Are Intermediary Constraints Priced?

Wenxin Du (Chicago and NBER) Benjamin Hébert (Stanford and NBER) Amy W. Huber (Stanford)

Virtual Derivatives Workshop, July 22, 2020

Image: A math a math

Introduction

Intermediaries face regulatory and other constraints

- e.g. leverage ratio requirements
- These constraints prevent intermediaries from closing arbitrage opportunities

e.g. covered interest parity violations

- Is the risk that these constraints tighten a priced risk factor?
- Direct test: does betting on arbitrage violations shrinking earn a risk premium?
- Yes: there is a significant risk premium
 - > This risk factor is correlated with other near-arbitrages and intermediary wealth
 - Exposure to this risk factor is priced in the cross-section

(日) (四) (日) (日) (日)

Model and Hypothesis

We build an intermediary-based asset pricing model:

- Built on He and Krishnamurthy (2011 and 2017) and Campbell (1993)
- Intermediaries faces a regulatory constraint (which creates CIP violation)
- CIP violation reveals shadow price (multiplier) of this constraint, and also represents investment opportunities.

We use the model to motivate a log SDF:

$$m_{t+1} = \mu_t - \gamma r_{t+1}^w + \xi |x_{t+1,0,1}|,$$

- r^w_{t+1} is return on intermediary manager's wealth
- ▶ $x_{t+1,0,1}$ is one-period spot CIP violation at time t+1
- Hypothesis: ξ meaningfully different from zero

< ロ > < 同 > < 回 > < 回 >

How to Test It?

Model implications:

- focus on largest CIP violation (fortunately, doesn't change sign)
- CIP should be correlated with other arbitrages/near-arbitrages
- CIP shocks could be supply, demand, or regulation
- CIP shocks and wealth returns likely correlated
- Test: trading strategy that bets on size of $x_{t+1,0,1}$ at time t
 - We call this strategy "forward CIP trading strategy"
 - not an arbitrage, but a risky bet on the size of future arbitrage
 - Check whether this trading strategy earns a significant risk premium

< ロ > < 同 > < 回 > < 回 >

Covered Interest Parity

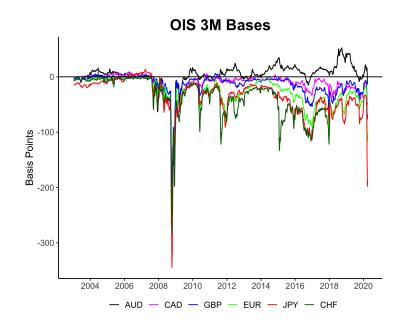
(Log) Spot CIP Basis, currency c:

$$x_{t,0, au}^{c,\$} = r_{t,0, au}^{\$} - r_{t,0, au}^{c} + rac{12}{ au}(f_{t, au}^{c,\$} - s_t^{c,\$})$$

r_{t,0,τ}, r^{\$}_{t,0,τ}: τ-month log rates at time t. s_t, f_{t,τ}: spot and τ-month fwd log exchange rates (foreign currency per USD)

- Difference between USD rate and synthetic USD rate (standard definition, Du, Tepper and Verdelhan (2018))
- All FX and rate data from Bloomberg: Benchmark results use OIS rates. Robustness results use IBOR, FRA rates.
- Pre-GFC: Jan 2003-June 2007, GFC: July 2007-June 2010, Post-GFC: July 2010-Aug 2018

< ロ > < 同 > < 回 > < 回 >



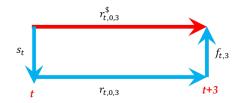
Du, Hébert, Huber (2020)

2

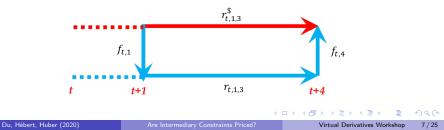
< □ > < □ > < □ > < □ > < □ >

Spot and Forward CIP

Spot 3M basis at t:
$$x_{t,0,3} = r_{t,0,3}^{\$} - r_{t,0,3} - \frac{12}{3}(s_t - f_{t,3})$$



1M forward 3M basis at t:
$$x_{t,1,3} = r_{t,1,3}^{\$} - r_{t,1,3} - \frac{12}{3}(f_{t,1} - f_{t,4})$$



Forward Covered Interest Parity

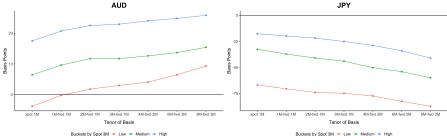
(Log) *h*-month forward starting CIP Basis, currency *c*:

$$\begin{aligned} x_{t,h,\tau}^{c,\$} &= r_{t,h,\tau}^{\$} - r_{t,h,\tau}^{c} + \frac{12}{\tau} (f_{t,\tau+h}^{c,\$} - f_{t,h}^{c,\$}) \\ &= \frac{h+\tau}{\tau} x_{t,0,h+\tau}^{c,\$} - \frac{h}{\tau} x_{t,0,h}^{c} \end{aligned}$$

r_{t,h,τ}, r^{\$}_{t,h,τ}: h-month forward τ-month log rates at time t
Note analogy to forward interest rates, term structure

Image: A matching of the second se

Term Structure of Forward CIP



Buckets by Spot 3M 🔸 Low 🝝 Medium 🔹 High

< □ > < □ > < □ > < □ > < □ >

Forward CIP Trading Strategy

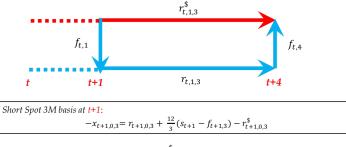
- 1. Initiate *h*-month forward τ -month forward CIP trade (long cash \$, short synthetic \$)
- 2. *h*-months later, unwind
- Annualized profits:

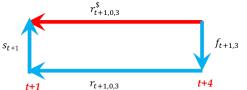
$$\pi_{t+h,h,\tau}^{c,\$} \approx \frac{\tau}{h} (x_{t,h,\tau}^{c,\$} - x_{t+h,0,\tau}^{c,\$})$$

- $\frac{\tau}{h}$ is like a bond duration
- A bet on whether slope of forward CIP curve is realized
 - Recall again analogy to term structure
- Note: implementable even if interest rates for the spot CIP arbitrage are not tradable or not true marginal rates

< □ > < 同 > < 回 > < 回 >

Long 1M forward 3M basis at t: $x_{t,1,3} = r_{t,1,3}^{\$} - r_{t,1,3} - \frac{12}{3}(f_{t,1} - f_{t,4})$





Monthly profit per \$1 notional on the forward CIP trading strategy at t+1: $\pi_{t+1,1,3} = \frac{3}{12} (x_{t,1,3} - x_{t+1,0,3})$

・ロト ・日下・ ・ ヨト・

Annualized profits and Sharpe ratio vs. the USD

		Mean (bps	5)	Sharpe Ratio			
	Pre-GFC	GFC	Post-GFC	Pre-GFC	GFC	Post-GFC	
AUD_USD	1.06	3.71	4.73***	0.28	0.10	0.90**	
	(0.98)	(19.41)	(1.78)	(0.27)	(0.50)	(0.37)	
CAD_USD	-0.93	1.50	5.56***	-0.26	0.05	1.10***	
	(1.57)	(15.50)	(1.57)	(0.44)	(0.48)	(0.32)	
GBP_USD	-1.47*	9.27	4.26***	-0.48*	0.27	0.84***	
	(0.77)	(16.13)	(1.67)	(0.27)	(0.42)	(0.31)	
EUR_USD	-1.15*	14.29	-1.35	-0.60**	0.34	-0.17	
	(0.60)	(20.07)	(2.54)	(0.30)	(0.40)	(0.33)	
CHF_USD	-1.34	5.97	-3.60	-0.35	0.14	-0.25	
	(0.86)	(18.14)	(4.72)	(0.26)	(0.40)	(0.36)	
JPY_USD	-1.97**	8.18	-9.53***	-0.81**	0.17	-1.04***	
	(0.97)	(22.78)	(3.11)	(0.39)	(0.44)	(0.33)	

æ

(日) (四) (日) (日) (日)

Properties of USD Pairs post-GFC

	Mean Fwd	Average Slope	Average	Corr SPX and
	Trad. Ret.		Interest Diff.	FX
AUD_USD	4.73	5.81	2.27	0.51
CAD_USD	5.56	5.63	0.48	0.49
GBP_USD	4.26	4.34	0.02	0.31
EUR_USD	-1.35	-1.22	-0.33	0.15
CHF_USD	-3.60	-3.69	-0.62	-0.07
JPY_USD	-9.53	-8.98	-0.37	-0.31

э

イロン イロン イヨン イヨン

Top FX Pairs with Largest Spot CIP Deviations

		Mean (bps	5)		Sharpe Ra	tio		
	Pre-GFC	GFC	Post-GFC	Pre-GFC	GFC	Post-GFC		
AUD_CHF	2.47**	-1.92	9.82*	0.50*	-0.06	0.64		
	(1.06)	(10.49)	(5.15)	(0.26)	(0.34)	(0.40)		
AUD_JPY	2.44*	-4.37	14.27***	0.61*	-0.16	1.38***		
	(1.37)	(10.40)	(3.40)	(0.35)	(0.36)	(0.35)		
USD_CHF	1.34	-5.97	3.60	0.35	-0.14	0.25		
	(0.86)	(18.14)	(4.72)	(0.26)	(0.40)	(0.36)		
CAD_CHF	1.01	-4.37	9.08**	0.20	-0.16	0.67*		
	(1.78)	(8.41)	(4.39)	(0.39)	(0.29)	(0.40)		
AUD_EUR	2.27***	-10.27	6.06**	0.62***	-0.41	0.68*		
	(0.88)	(9.01)	(2.93)	(0.24)	(0.32)	(0.35)		
USD_JPY	1.97**	-8.18	9.53***	0.81**	-0.17	1.04***		
	(0.97)	(22.78)	(3.11)	(0.39)	(0.44)	(0.33)		
GBP_CHF	0.16	3.17	8.16*	0.04	0.14	0.61		
	(0.91)	(7.03)	(4.29)	(0.20)	(0.33)	(0.39)		
CAD_JPY	-0.08	-6.66	15.01***	-0.02	-0.23	1.69***		
	(1.41)	(11.11)	(2.89)	(0.37)	(0.36)	(0.35)		
	()	、)	()	()	()	(===)		

э

イロト イヨト イヨト

Portfolio Returns

		Mean (bps	;)	Sharpe Ratio			
	Pre-	GFC	Post-	Pre-	GFC	Post-	
Classic Carry (AUD-JPY)	2.44*	-4.37	14.27***	0.61*	-0.16	1.38***	
	(1.37)	(10.40)	(3.40)	(0.35)	(0.36)	(0.35)	
3 Currency Carry	0.32	-4.59	9.77***	0.14	-0.24	1.28***	
	(0.88)	(7.09)	(2.59)	(0.39)	(0.33)	(0.41)	
Dynamic Top5 Basis	1.83***	0.18	11.36***	0.79**	0.01	1.11^{***}	
	(0.76)	(14.21)	(3.33)	(0.34)	(0.44)	(0.41)	
Top 10 Basis	0.84	-5.32	9.00***	0.38	-0.21	1.06***	
	(0.72)	(10.01)	(2.86)	(0.36)	(0.36)	(0.40)	
Simple Dollar	-0.95	7.37	-0.06	-0.51	0.20	-0.01	
	(1.09)	(18.17)	(1.86)	(0.56)	(0.45)	(0.35)	

2

メロト メタト メヨト メヨト

Return Predictability

- Term structure literature: upward slope doesn't materialize, and slope predicts the magnitude of returns (Campbell and Shiller, 1991)
- Let's try the analogous idea here:

$$\underbrace{\mathbf{x}_{t,h,\tau}^{c} - \mathbf{x}_{t+h,0,\tau}^{c}}_{\text{Fwd CIP Trading Profit}} = \alpha + \beta \underbrace{\left(\mathbf{x}_{t,h,\tau}^{c} - \mathbf{x}_{t,0,\tau}^{c}\right)}_{\text{Slope}} + \epsilon_{t+h}^{x}$$

- Like using slope of term structure to predict long horizon bond returns
- Note: $x_{t,h,\tau}^{x}$ appears in profit and slope
 - We try instrumenting with lagged slope

• • • • • • • • • • • •

Return Predictability

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Spread		0.710***	0.554***	0.509***	0.584***	0.507***	0.588**	0.772*
		(0.127)	(0.122)	(0.106)	(0.113)	(0.127)	(0.194)	(0.303)
Spot				0.0534*	0.0945*	0.0533*	0.0469	0.0339
				(0.0208)	(0.0396)	(0.0225)	(0.0272)	(0.0355)
Cons.	0.0476***	¢	0.0202		-0.0300			
	(0.0113)		(0.0111)		(0.0207)			
RMSE	0.119	0.115	0.114	0.112	0.112	0.112	0.112	0.114
1st F						1005.0	153.0	61.48
Lag						1	5	10
Obs	2099	2099	2099	2099	2099	2092	2092	2092

2

< □ > < □ > < □ > < □ > < □ >

Why CIP?

In our model, nothing is special about CIP per se

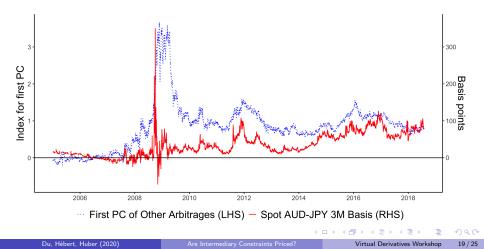
- Any arbitrage can be used to measure shadow price on regulatory constraint
- Consequently, all arbitrages should co-move
- ▶ In the real world, CIP is particularly clean:
 - It was zero pre-GFC, and can be measured accurately
 - It doesn't involve cheapest-to-deliver options or other nuisances
 - It has a rich term structure we can use to construct forward trading strategies

<ロト < 同ト < ヨト < ヨ)

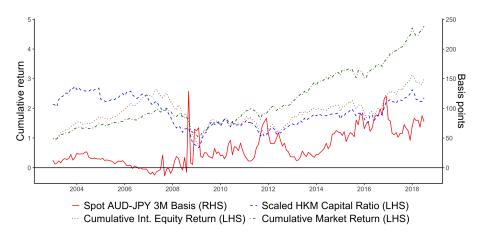
Comparing CIP Deviations and Other Arbitrages

- We check for co-movement with other near-arbitrages:
 - bond-CDS, CDS-CDX, Libor tenor basis, 30Y swap spread, KfW vs Bunds, Refco vs Treasurys, TIPS vs. nominal treasury with inflation swaps

► High correlation correlation between 1st PC and AUD-JPY 3M spot basis



CIP Deviations and Proxies for Intermediary Wealth



Forward CIP Returns and Intermediary Wealth

		Daily Overla	Monthly Returns			
	(1)	(2)	(3)	(4)	(5)	(6)
Market		0.007*		-0.0003		-0.001
		(0.004)		(0.004)		(0.005)
Int. Equity			0.006***	0.006**		
			(0.002)	(0.003)		
HKM Factor						0.004
						(0.003)
Constant	0.048***	0.038***	0.042***	0.042***	0.053***	0.052***
	(0.011)	(0.012)	(0.011)	(0.012)	(0.013)	(0.014)

Formal Bayesian tests (Barillas and Shanken (2018) and Chib, Zeng and Zhao (2020)) show that the SDF includes both intermediary wealth and forward CIP returns fit the data better.

Cross-Sectional Implications

- Forward CIP trading profits directly test if the risk of the basis widening is priced
- Our model, however, gives an SDF:

$$m_{t+1} = \mu_t - \gamma r_{t+1}^w + \xi |x_{t+1,0,1}|$$

All assets exposed to forward CIP returns (r^x_{t+1}) should earn excess returns
Cross-sectional test, building on He, Kelly and Manela (2017) (HKM):

$$R_{t+1}^{i} - R_{t}^{f} = \mu_{i} + \beta_{w}^{i} (R_{t+1}^{w} - R_{t}^{f}) + \beta_{x}^{i} r_{t+1}^{x} + \epsilon_{t+1}^{i},$$

$$E[R_{t+1}^i - R_t^f] = \alpha + \beta_w^i \lambda_w + \beta_x^i \lambda_x.$$

From mean return, we expect $\lambda_x = -4.8 bps$, $\lambda_w = 61 bps$

We formally test this alternative hypothesis

< □ > < 同 > < 回 > < 回 >

Cross-Sectional Details

- We study Fama-French Size x Value 25, US Tsy/Corp. Bonds, FX Portfolios, Sovereign bonds, Equity Options, CDS, Commodity Futures
 - Also use non-AUD/JPY forward forward CIP trading strategy returns as test assets
- GMM standard errors to account for estimated betas
- Try both HKM proxies for intermediary wealth return
- Monthly data

< □ > < 同 > < 回 > < 回 >

Cross-Sectional Asset Pricing Test, 2-Factor

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	US	Sov	FX	Opt	CDS	FwdCIP	FF6	Comm	1-6
Int. Equity	0.182	1.363	1.845	1.485	2.330	-0.0337	0.301	1.031	0.728
	(0.746)	(1.565)	(0.639)	(0.996)	(1.016)	(2.206)	(4.148)	(0.694)	(0.466)
Neg. Fwd CIP Ret.	-0.174	-0.0784	-0.0718	-0.126	-0.0274	-0.0621	0.0839	-0.0171	-0.0725
	(0.114)	(0.0661)	(0.0508)	(0.0492)	(0.0660)	(0.0371)	(0.341)	(0.0277)	(0.0332)
Intercepts	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
MAPE (%/mo.)	0.030	0.022	0.060	0.034	0.017	0.007	0.106	0.363	
H1 p-value	0.436	0.716	0.150	0.289	0.144	0.955	0.186	0.373	0.813
KZ p-value	0.079	0.379	0.107	0.035	0.355	0.226	0.780	0.780	0.041
N (assets)	11	6	11	18	5	9	6	23	60
N (beta, mos.)	98	98	98	98	98	98	98	98	
N (mean, mos.)	360	283	418	272	170	98	1106	331	

Standard errors in parentheses

イロト イヨト イヨト イヨト

Conclusion

- The risk that CIP violations become bigger is priced, strongly supportive of intermediary asset pricing theory.
- This should be expected given intermediary asset pricing (He and Krishnamurthy, 2011) meets intertemporal hedging (Campbell, 1993)
- Hard to explain existence of arbitrage, why arbitrage risk is priced, and why it co-moves with intermediary wealth without central role for intermediaries

< □ > < 同 > < 回 > < 回 >