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Abstract

We develop an arbitrage-free framework to characterize how shocks to one
financial asset reprice others through shared exposure to traded, non-diversifiable
risk factors. We apply it to study demand shock propagation in foreign exchange
(FX). Using a novel technique that jointly analyzes trading flows and returns, we
first identify three traded risk factors—Dollar, Carry, and a new factor linked to
active euro–yen trading—that together explain 90% of the non-diversifiable risk
borne by FX intermediaries. These risk factors transmit shocks across currencies
through shared exposures, as factor prices respond to demand shocks. We then
estimate their price sensitivity to demand using an instrumental-variable strategy
enabled by our factor construction, which isolates factor-specific variation from
correlated cross-section. We find that factor prices rise by 5–30 basis points per $1
billion of net demand, underscoring intermediaries’ limited risk-bearing capacity.
Finally, we quantify demand propagation across 17 currencies and 6 asset classes,
showing that interventions targeting a single currency can propagate globally,
moving both other exchange rates and non-currency assets with currency risk
exposure.
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1 Introduction

A defining feature of modern financial markets is their tight interlinkages. Episodes such as
the Global Financial Crisis of 2007–2009 serve as stark reminders that shocks originating in
one corner of the market can rapidly propagate across the globe (e.g., Allen and Gale, 2000;
Pavlova and Rigobon, 2008). One class of shocks that arises frequently in asset markets
are demand shocks. Although they do not reflect new fundamental information, demand
shocks nonetheless move prices powerfully (e.g., Lee, Shleifer, and Thaler, 1991; Froot and
Ramadorai, 2008; Koijen and Yogo, 2019). In an interconnected system, these shocks rarely
affect only a single asset. For example, when a central bank intervenes in the foreign exchange
market, the target currency moves—but so do many others. Which currencies react, and by
how much? Answering these questions is essential for understanding how shocks propagate
and for designing effective policy interventions and responses.

Yet the very linkages that enable such propagation also make it difficult to measure.
In principle, every asset could be affected by shocks to every other, thus flexibly capturing
propagation across a market with N assets would require estimating N2 cross-impact co-
efficients. However, genuine asset-specific demand variation is scarce: investor flows often
arrive in correlated baskets, rebalancing typically affects multiple assets at once, and index-
linked trades tend to move many markets together. Progress therefore hinges on imposing
structure, a task complicated by the high degree of interconnectedness and substitutability
among financial assets (Fuchs, Fukuda, and Neuhann, 2025; Haddad, He, Huebner, Kondor,
and Loualiche, 2025; Koijen and Yogo, 2025).

In this paper, we propose an arbitrage-free framework for quantifying demand propaga-
tion. We argue that when a single asset is hit by a demand shock, marginal investors end up
carrying additional exposure in a small set of traded, non-diversifiable risk factors; the re-
sulting shift in factor demand moves factor prices, which in turn reprices all assets that load
on those factors. Two well-established insights underpin the framework. First, asset prices
co-move because investors care about non-diversifiable risks, which can be represented as fac-
tor portfolios or “factors” (Markowitz, 1952; Ross, 1976; Kozak, Nagel, and Santosh, 2018).
Second, these factors are inelastic: small quantity changes generate large price movements
(Gabaix and Koijen, 2021; Li and Lin, 2022). Our contribution is to link factor inelasticities
with each asset’s exposure to those factors, thereby imposing an arbitrage-free structure on
the N2 asset-level demand propagation problem.

While the underlying intuition is clear, operationalizing the framework raises two key
challenges. First, which factors actually transmit demand shocks? Risk factors are typically
proposed to explain common variation in returns (Ross, 1976). But a singular focus on
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returns ignores quantities, and the resulting risk factors need not correspond to those that
investors actually trade—and that are therefore exposed to demand shocks. We bridge this
gap with a new method that jointly analyze price and quantity data. This method uncovers
what we call “traded risk factors”: portfolios that explain the majority of non-diversifiable
risk borne by marginal investors when absorbing trading flows, and that therefore serve as
the principal conduits for demand-shock propagation.

Second, how does propagation work when multiple risk factors are at play? Even with
K ≪ N factors, if a shock to one factor could reprice others, a fully flexible model still
requires K2 parameters. Moreover, it is challenging to map all K2 parameters to economic
primitives. In response, we construct the traded risk factors to be orthogonal. By design,
each factor behaves like a standalone asset, such that demand shocks to one factor do not
affect the price of another. Hence, propagation at the factor level is governed by just K

parameters, with each parameter directly capturing the marginal investors’ aversion to ab-
sorbing additional risk in that factor. Under no-arbitrage, the cross-impact between any
two assets depends on: (i) Risk reallocation: how a demand shock to the first asset alters
net demand for each factor, (ii) Factor repricing: how each factor’s price responds to risks
induced by its own demand, and (iii) Pass-through: how the altered factor prices change
second asset’s price.

We apply our framework to study demand propagation in foreign exchange (FX). Demand
shocks, such as those caused by central-bank interventions, corporate hedging, and index re-
balancing, hit currencies almost daily. At the same time, no currency market operates in
isolation. Sophisticated intermediaries absorb customer trades and pass any resulting inven-
tory risk among themselves through a dense inter-dealer network. This constant reshuffling
leaves returns to align with a handful of common factors (Lustig, Roussanov, and Verdel-
han, 2011), underscoring the role of non-diversifiable risks in driving currency co-movement.
What has been missing is data on the underlying trading flows. A novel dataset that records
the net positions handled by more than 70 major intermediaries across 40 currency pairs fills
this gap, which we harness to reveal the risks FX intermediaries truly bear.

Our inquiry starts with identifying the most important non-diversifiable risks in FX
trading: the traded risk factors. To do so, we jointly analyze the daily trading flows between
customers and intermediaries across 17 major currencies and the corresponding panel of
currency returns. Unlike merely tradable factors, these traded factors capture the non-
diversifiable risks that investors actually trade.1 The two most prominent traded FX factors

1“Tradable factors” are risks that can be traded because they track portfolios that can be bought or
sold. “Non-tradable factors” describe risks that can be measured but not directly traded, such as the global
economy. The “tradable” label does not require that the corresponding portfolios to be actually traded.

2



resemble the well-known Dollar and Carry factors. Additionally, we uncover a Euro-Yen
Residual factor that captures the residual risks borne by intermediaries when accommodating
active customer trading between the euro area and Japan, even after hedging the Dollar and
Carry factors. This new factor delivers a Sharpe ratio comparable to that of the Carry
factor. Analyzing trading data jointly with return adds valuable insight: for one, it recovers
the Carry factor without first sorting currencies by interest rates, as in Lustig, Roussanov,
and Verdelhan (2011); for another, it uncovers risk dimensions that matter for trading—and
thus for demand propagation—beyond the unconditional risks identified by analyzing returns
alone. Our approach also contrasts with analyses based solely on flows, which uncovers the
most heavily traded currency pairs but do not reveal the underlying risk factors. Together,
the top three traded FX factors account for 90% of the trading-induced non-diversifiable
risks in our sample, are economically interpretable, and remain stable over time. Beyond
explaining trading-induced risks, these factors reveal intermediaries’ otherwise unobserved
risk exposures. For instance, using net trading flows into the Carry factor, we estimate that
intermediaries accumulated $0.8 trillion in Carry trade exposure from 2012 to 2023.

Next, we investigate how the price of each traded FX factor responds to its own trading-
induced risks. To estimate this price sensitivity from observed trading flows and returns, we
use instrumental variables (IVs). A valid instrument must satisfy three conditions: relevance,
exogeneity, and exclusion restriction. In our context, the ideal instrument should affect trad-
ing demand without carrying information about fundamentals, and crucially, the instrument
should affect a factor’s price only though demand for that factor. This last requirement is
difficult to satisfy in general, as financial assets are tightly linked: any instrument that shifts
demand for one asset is likely to shift demand for others that are not included in the regres-
sion. Such spill-overs of demands feed back into the original asset’s price via cross-impacts,
contaminating the estimate of own price elasticity. However, because our traded FX factors
are constructed to be mutually orthogonal, each factor’s return is, by design, affected only by
its own trading demand. As a result, even if an instrument induces trading across multiple
factors, we can consistently estimate a factor’s price sensitivity by simply regressing its re-
turn on its own instrumented demand. Haddad, He, Huebner, Kondor, and Loualiche (2025)
also highlight that asset interlinkages can complicate IV estimation, and address the issue
by regressing each factor’s return on the instrumented demand of all factors. We achieve the
same goal through orthogonality, which allows us to isolate price sensitivity without taking
a stance on the complete set of risk factors.

We use as instrumental variables the week-ahead announcements of the offering amount
at upcoming sovereign bond auctions in the U.S., Australia, Canada, France, Germany,
Italy, Japan, and the U.K. These sovereign auctions often attract foreign investors who
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need to convert currencies to participate, making the instruments relevant. Importantly,
because these auctions are typically forward-guided, the week-ahead announcements contain
limited new information, making the instruments plausibly exogenous and satisfying the
exclusion restriction. For instance, in the U.S., the Treasury Borrowing Advisory Committee
(TBAC) releases two-quarter-ahead recommendation on auction amounts; the subsequent
week-ahead announcements and the eventual auctions exhibit little deviation from these
recommendations (Rigon, 2024). Although the timing and the amount of bonds auctioned
are well anticipated, such predicable demand shocks could still affect prices when realized
(Vayanos, 2021; Hartzmark and Solomon, 2024). We find that compensating intermediaries
for absorbing a $1 billion non-diversifiable demand shock requires price increases of 5 basis
points (bps) for the Dollar, 9 bps for the Carry, and 29 bps for the Euro-Yen Residual. These
contemporaneous price responses fully revert within a month, supporting the interpretation
that our instruments capture uninformed shocks. As the price impact from trading is mean-
reverting, trading volatility explains a sizable share of short-term return variance—about
10–35% of the 1-week return, but considerably less at longer horizons—5–15% of the 1-
month return.

Our results imply that FX intermediaries have relatively limited risk-bearing capacity.
The traded FX factors exhibit higher price sensitivity to demand shocks than the U.S.
equities market factor.2 Supporting the interpretation that higher price sensitivity reflects
intermediaries’ more limited risk-bearing capacity, we also find evidence of state-dependence.
Specifically, when intermediaries’ public equity returns are high, the Dollar factor’s price
sensitivity is low. As equity returns likely capture variations in intermediaries’ wealth, our
findings are consistent with greater wealth leading to greater willingness to bear risk (He
and Krishnamurthy, 2013; Brunnermeier and Sannikov, 2014). One potential reason for
FX intermediaries’ limited risk-bearing capacity is the relatively limited arbitrage capital
in this highly specialized market. Although there is large daily trading volume in FX, up
to 75% of trades are between intermediaries (BIS, 2022), leaving a more modest pool of
capital to absorb demand shocks. Differences in arbitrage capital may also explain the cross-
factor variation in price sensitivity, with lesser-known factors such as the Euro-Yen Residual
attracting less arbitrage capital and exhibiting greater price sensitivity.

Having identified the most important traded FX factors and each factor’s price sensitivity
to risk, we use these findings to trace out demand propagation across currencies. When
intermediaries accommodate a demand shock to one currency, they bear additional non-

2Gabaix and Koijen (2021) find that a 1% larger trading demand shock to the entire U.S. stock market
increases price by 5%. Such a shock can be interpreted as a shock to the market factor. The average market
capitalization between 2012 and 2022 is about $31.7 trillion. A $1 billion demand shock in our sample period
therefore raises the price of the market factor by about 2 bps.
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diversifiable risks captured by the traded FX factors. These risks then affect the prices of
the traded FX factors in proportion to these factors’ price sensitivities. Finally, the law
of one price ensures that prices of other currencies that share those exposures also adjust
and such exposures can be measured as betas or factor loadings. We quantify this demand
propagation through cross-multipliers, which measure how a demand shock to one currency
affects the price of another, holding the demand shocks to all other currencies constant.3

We uncover rich patterns of cross-currency substitution arising from exposures to the
three traded risk factors. Currencies exhibit strong demand propagation when they share
the same sign of loading to a factor and modest propagation when they have opposite signs.
For instance, we find a large cross-multiplier between the Australian dollar (AUD) and
the Canadian dollar (CAD) because both currencies have the same sign of loadings on all
three traded FX factors, making them close “substitutes” whose prices co-move strongly. In
contrast, the cross-multiplier between the Japanese yen (JPY) and either AUD or CAD is
small because JPY has the opposite loading on the Carry factor, allowing these currencies
to hedge each other by reducing intermediaries’ exposure to the Carry factor. Similarly,
while the euro (EUR) and JPY are both low-interest-rate currencies and act as “substitutes”
with respect to the Carry factor, they are on opposite sides of the Euro-Yen Residual factor,
making them “complements” for that factor. As a result, we estimate only a modest cross-
multiplier, implying muted demand propagation between EUR and JPY.

Additionally, we find that five major non-currency assets also load on the traded FX
factors, allowing demand shocks to propagate across markets through shared currency risk.
We study U.S. Treasury bonds (Treasurys), corporate bonds, options, CDS, and commodi-
ties. The traded FX factors explain approximately 30% of each asset class’ return variance.
Consequently, a demand shock to, say, corporate bonds generates non-diversifiable risks as
captured by the traded FX factors. These risks affect the prices of traded FX factors and, in
turn, the prices of options and other assets that load on the affected factors. Demand shocks
transmitted through the traded FX factors have the smallest price effect on U.S. Treasurys,
consistent with the depth and liquidity of the Treasurys market. Notably, only Treasurys
exhibit negative cross-multipliers with other assets, reflecting Treasurys’ “safe haven” status.
In our framework, this safe-haven property arises because Treasurys load on the Carry factor
with a uniquely negative sign, making them an effective hedge against other asset classes
during shifts between “risk-on” and “risk-off” regimes.

Our paper contributes to the understanding of demand propagation across assets marked
3Because idiosyncratic risk does not transmit demand shock across different currencies, our three factors

home in on the part that does: systematic risk. That said, our results should not be interpreted as cap-
turing the total multipliers across all currencies. Doing so would require measuring both price responses to
systematic risk and price responses to idiosyncratic risk while holding systematic risk constant.
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by high degree of interconnection, substitutability, and complementarity (Fuchs, Fukuda,
and Neuhann, 2025; Haddad, He, Huebner, Kondor, and Loualiche, 2025; Koijen and Yogo,
2025). In essence, we introduce a new structure to the daunting N × N cross-impact coef-
ficients by appealing to a handful of orthogonal risk factors that are known to drive price
co-movements. Our approach complements and contrasts with other structural approaches
undertaken to study demand shocks. One existing approach maps the effect of demand to
asset characteristics via micro-founded demand systems (e.g., Koijen and Yogo, 2019, 2020;
Bretscher, Schmid, Sen, and Sharma, 2022; Chaudhary, Fu, and Li, 2023; Jiang, Richmond,
and Zhang, 2024). Another approach links the price effect of demand shocks to pairwise re-
turn covariances (e.g., Vayanos and Vila, 2021; Kodres and Pritsker, 2002; Pasquariello and
Vega, 2015; Davis, Kargar, and Li, 2023; Greenwood, Hanson, and Vayanos, 2023; Jansen,
Li, and Schmid, 2024). Similar to these approaches, we take seriously the factor structure
in asset returns, which is shown to be empirically important even in the presence of noise
trading (Kozak, Nagel, and Santosh, 2018). At the same time, we innovate on two key di-
mensions. First, because we are interested in propagation across assets, we directly study the
effect of demand shocks to traded, non-diversifiable risks. Second, we allow possibly different
risk-bearing capacity, and thereby price sensitivity, toward different risks. Consequently, we
are able to generate flexible cross-asset dynamics that allow assets to be substitutes with
respect to one risk but complements with respect to another.

Our paper also extends the literature on exchange rates by developing a novel approach
to quantifying the price response of trading flows through risks. Beyond conveying informa-
tion (e.g., Evans and Lyons, 2002; Pasquariello, 2007; Froot and Ramadorai, 2008), trading
influences prices by increasing the non-diversifiable risks that marginal investors must bear.
Our contribution is to recover risk factors that investors empirically deem important by an-
alyzing their trading behavior together with return data. This revealed-preference approach
differs from, and complements, the literature’s typical method of conjecturing relevant state
variables based on economic intuition, constructing factors from those variables, and then
testing these factors’ cross-sectional pricing power.4 We find that the two most traded FX
factors, the Dollar and the Carry, are the same factors that price unconditional FX returns
(Lustig, Roussanov, and Verdelhan, 2011). We moreover introduce a new Euro-Yen Residual
factor, which delivers a Sharpe ratio comparable to that of the Carry factor and is priced
conditionally on demand shocks. Beyond identifying traded risks in FX, we uncover new
evidence demonstrating the pivotal role of FX intermediaries’ risk-bearing capacity in how

4For example, Fama and French (1993) identify size and value as key state variables for determining
expected returns, sort stocks by these variables to build the size and value factors, and then show that these
factors price the cross-section of expected returns.
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risks are priced in trading. Our findings complement existing research on priced risk factors
in FX markets (e.g., Bansal and Dahlquist, 2000; Lustig and Verdelhan, 2007; Hassan and
Mano, 2018; Korsaye, Trojani, and Vedolin, 2023) and offer fresh insights into the role of
trading-induced risks in driving price co-movements across currencies, between FX and other
asset markets, as well as in transmitting monetary policy shocks (e.g., Jiang, Krishnamurthy,
and Lustig, 2021; Camanho, Hau, and Rey, 2022; Chernov and Creal, 2023; Gourinchas, Ray,
and Vayanos, 2024; Loualiche, Pecora, Somogyi, and Ward, 2024; Liao and Zhang, 2025).

More generally, our paper augments the intermediary asset pricing and the microstructure
literature, both of which emphasize intermediaries’ limited risk-bearing or balance-sheet
capacity as a driver of asset price responses to customers’ demand shocks (e.g., Ho and Stoll,
1981; Grossman and Miller, 1988; Gabaix and Maggiori, 2015; He and Krishnamurthy, 2017;
Kondor and Vayanos, 2019; Haddad and Muir, 2021; Du, Hébert, and Huber, 2023; Du,
Hébert, and Li, 2023). While we share this focus on intermediaries and the frictions they
face, our approach differs in emphasizing that intermediaries’ pricing decisions are shaped
by non-diversifiable risks aggregated across all assets, rather than analyzing the risks of
individual assets in isolation. In this sense, our perspective aligns with the foundational
insights of Markowitz (1952), Sharpe (1964), and Lintner (1965), where non-diversifiable
risks are the primary concern in asset price determination.

The next section presents our theoretical framework. Section 3 introduces the data
sources and Section 4 identifies the traded FX factors. Section 5 examines the uncondi-
tional and conditional pricing properties of the traded FX factors. Section 6 explores how
these factors propagate demand shocks across currencies and other asset classes. Section 7
concludes.

2 Theoretical Framework

This section begins by introducing the model setup. It then describes the construction of the
traded risk factors, the solution for these factors’ price sensitivity to trading-induced risks,
and the mapping from factor-level price sensitivity to demand propagation across individual
currencies.

2.1 Model Setup

There are three periods: t = 0, t = 1, and t = 2; and there are N + 1 currencies, where
the last currency serves as the numeraire. Customers buy or sell any pair of the N + 1

currencies. These trades could be motivated by demand shocks (e.g., preference shocks) or
private information. All customer trades are accommodated by a mass µ of competitive

7



intermediaries. For n = 1, . . . , N , the return of currency n from time 0 to time 1 is rn,
which is defined as the return from borrowing one unit of the numeraire at its risk-free rate,
converting it to currency n at time 0, investing at currency n’s risk-free rate from time 0

to 1, and then converting it back to the numeraire at time 1. We stack rn into an N × 1

vector as r = (r1, r2, . . . , rN)
⊤.5 Similarly, Rn denotes the return of currency n between time

1 and time 2, which we stack into an N ×1 vector R = (R1, R2, . . . , RN)
⊤. We assume there

are no redundant currencies, so the matrix var(r) has full rank, and we assume that the
return covariance structure remains stable over time, such that var(r) = var(R).6 Our goal
is to study the price response of customer demand shocks between time 0 to time 1, holding
constant the trading between time 1 and time 2. We empirically map the interval between
time 0 to time 1 to a week. Time t = 2 represents the long term, where currency prices are
no longer affected by demand shocks between time 0 and time 1; reaching this stage may
take months in reality.

2.2 Factor Construction

We want to study trading-induced risks that intermediaries bear at the margin. We thus
aim to identify a few factors that maximally explain the non-diversifiable risks induced
by the aggregate trading flow. Using the U.S. dollar (USD) as the numeraire currency,
we first decompose all trades between time 0 and 1 into trades against USD, and express
the aggregate trading flow as f = (f1, f2, . . . , fN)

⊤, where fn is the net customer buying
flow for currency n against USD.7 For any given factor b1 = (b1,1, . . . , bN,1)

⊤, where bn,1

represents the weight of currency n in this factor,8 currency n loads on the factor with
βn,1 = cov(rn,b⊤

1 r)/var(b⊤
1 r). When intermediaries accommodate a currency-level trading

flow, fn, they effectively bear a factor-level trading flow of size fnβn,1, along with other risks
uncorrelated with the factor. Given that there are N currencies, intermediaries can offset
the factor-level trading flow across different currencies, leaving a non-diversifiable factor-level

5Throughout this paper, bold font is used to denote matrices and vectors, and A⊤ represents the trans-
pose of A.

6All our theory holds if we instead assume the more general form var(r) = Lvar(R), for some positive
constant L.

7Specifically, if a customer buys currency n by selling currency m, we record it as a positive trading flow
for currency n from USD and a negative trading flow for currency m from USD. In Supplemental Appendix
A, we prove that the construction of traded risk factors remains invariant to the choice of the numeraire
currency.

8By definition, the weight of USD in this factor is −
∑N

n=1 bn,1.
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flow of amount9

q1 =
N∑

n=1

fnβn,1 = cov(f⊤r,b⊤
1 r)/var(b⊤

1 r). (1)

Note that for any given factor (as defined by the portfolio weights b1), the factor-level
trading flow q1 varies in proportion to the currency-level trading flow fn, and this relationship
depends on the factor being considered, as varying b1 changes the beta (βn,1) of a currency
to a factor.

The last equality in (1) admits a “portfolio beta” interpretation. Here, f = (f1, f2, . . . , fN)
⊤

represents the marginal portfolio position intermediaries take when accommodating the trad-
ing flow, and b1 is the factor portfolio under consideration. Equation (1) shows that q1 is
simply the beta of the marginal portfolio f with respect to the factor portfolio b1. The factor
flow q1 quantifies how much intermediaries adjust their exposure to factor b1 as a result of
accommodating customer flow.

We next specify the problem that pins down the most traded risk factors. Because
returns are defined per dollar, βn,1 measures the additional factor exposure in dollars from
one dollar invested in currency n. Thus, when summing the currency-level flows fn using the
beta weights in (1), these flows must be measured in dollars,10 and the resulting factor flow q1

is likewise expressed in dollars. A one-dollar flow into factor b1 adds extra risk of var(b⊤
1 r).

As q1 varies, the amount of extra risk varies accordingly. Hence, the most traded risk factor
is determined by finding the portfolio weights b1 that produce the largest trading-induced
risk:

max
b1

var(q1)var(b⊤
1 r). (2)

Even though a portfolio can be freely levered, this objective function is scale invariant.11

We construct the second factor b2 by requiring that the second factor has an uncorrelated
return with the first and maximizes the same objective,

max
b2

var(q2)var(b⊤
2 r) (3)

s.t. cov(b⊤
1 r,b

⊤
2 r) = 0,

9Our model assumes a representative intermediary who accommodates all customer trades. In practice,
such netting across currencies could also occur through interdealer trading.

10For example, normalizing fn by the aggregate trading volume of the currency and then applying equation
(1), would result in an incorrect aggregation.

11Specifically, if b1 is doubled, βn,1 in equation (1) is halved, causing q1 to also halve, which leaves the
objective function unchanged.
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where q2 = cov(f⊤r,b⊤
2 r)/var(b⊤

2 r).12

This sequential maximization procedure is similar to the standard principal component
analysis (PCA) on returns alone, which is a common asset-pricing approach used to identify
factors that maximally explain unconditional risks (Ross, 1976; Fama and French, 1993;
Lustig, Roussanov, and Verdelhan, 2011).13 Our procedure extends the standard PCA
framework by incorporating both trading and returns data to maximally explain conditional
trading-induced risks. Appendix A.1 provides details on solving for these factors through
eigenvalue decomposition. In theory, one can construct at most K factors, where K is the
number of independent variations driving the flow f—mathematically, the rank of the matrix
var(f). Empirically, a small number of factors are typically sufficient to explain the majority
of trading-induced risks.

Our procedure can also be interpreted as a risk-based extension of the standard PCA
on flows alone, an intuitive approach for analyzing trading data. Specifically, if the returns
of different currencies are i.i.d. (i.e., var(r) is proportional to the identity matrix), our
procedure becomes identical to the standard PCA on flows.14 Moreover, if the returns of
different currencies are independent but each currency n has its own return volatility σn,
our procedure reduces to the standard PCA on σnfn, the risk-weighted flows.15 The most
general form of the objective function (2) accommodates scenarios where different currencies
can exhibit common variations in returns.

2.3 Price Sensitivity to Trading-Induced Risks

Having identified the traded risk factors, we now derive the price sensitivity to trading-
induced risks of each factor through the portfolio optimization of a representative interme-
diary. Our model is kept deliberately simple to emphasize the relationship between trading
and asset prices. We assume that the mass µ of intermediaries have CARA preference.16

In addition to risk aversion, the only type of friction that the model features is possible
factor-specific frictions in accommodating risks, leading to possibly different factor-specific
risk-aversion, denoted by γk for factor k. In practice, not all intermediaries may be willing
to accommodate risks in every factor. If some intermediaries choose not to absorb risks of a

12Because the returns of different factors are uncorrelated by construction, the univariate beta defined
here is equivalent to the multivariate beta.

13Specifically, the first factor b1 maximizes the variance of the factor return: var(b⊤
1 r). The second factor

b2, conditional on being uncorrelated with the first factor, i.e., cov(b⊤
1 r,b

⊤
2 r) = 0, again aims to maximize

the variance of the factor return: var(b⊤
2 r), and so on.

14Specifically, (2) simplifies to max{b1,1,b2,1,...,bN,1} var(
∑N

n=1 fnbn,1)/(
∑N

n=1 b
2
n,1).

15Specifically, (2) simplifies to max{g1,g2,...,gN} var(
∑N

n=1 σnfngn)/(
∑N

n=1 g
2
n), where gn is defined as

σnbn,1.
16We can re-cast the absolute risk aversion as a function of wealth to mimic a CRRA preference.
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certain factor k, this would manifest as a higher effective risk aversion, γk, in our model.
The traded risk factors in Section 2.2 are constructed using observed, equilibrium trad-

ing flows and returns. As such, we have identified the factors with the largest amount of
trading-induced risks in equilibrium, which are priced partly due to changes in fundamen-
tals (e.g., the arrival of news, learning from trades) and partly due to intermediaries being
pushed against their risk-bearing capacity. Our goal is to compute the sensitivity of price
change to uninformed demand shocks. To achieve this, we examine the price response of hy-
pothetical and marginal demand shocks f̂1, . . . , f̂N , which occur between times 0 and 1 and
are uninformed about currency prices at time 2. Due to intermediaries’ limited risk-bearing
capacity, the (percentage) price response of currency n at time 1 is

∆p̂n :=
Pn(f̂1, . . . , f̂N)− Pn(0, . . . , 0)

Pn(0, . . . , 0)
, (4)

where Pn(f̂1, . . . , f̂N) is the exchange rate of currency n (measured as the number of USD
per foreign currency) with demand shocks f̂1, f̂2, . . . , f̂N . Then, for factor k that holds $bn,k
of currency n against the USD, the price response is

∆pk =
N∑

n=1

bn,k∆p̂n. (5)

The factor-level demand shock is aggregated in the same way as equation (1),

q̂k =
N∑

n=1

βn,kf̂n. (6)

The equilibrium price responses are such that each intermediary finds it optimal to buy
yk = −q̂k/µ dollars of factor k. For each additional dollar of factor k purchased, intermedi-
aries bear an extra payoff risk of b⊤

k R at time 2. This factor is bought at the adjusted price
∆pk at time 1, which is compounded to time 2 by multiplying it by the USD gross risk-free
rate RF . Hence, the representative intermediary’s optimization problem reads

{−q̂1/µ, . . . ,−q̂K/µ} = arg max
{y1,...,yK}

E

[
− exp

(
−

K∑
k=1

γkyk(b
⊤
k R−RF∆pk)

)]
. (7)

Applying the first-order condition to (7) and using the assumption that var(r) = var(R),
Proposition 1 determines the equilibrium price response for each factor.

PROPOSITION 1 (Price sensitivity to trading-induced risks). Denoting λk =

11



γk/(µRF ), the price response of factor k is

∆pk = λkq̂kvar(b⊤
k r). (8)

The parameter λk is termed the “price sensitivity to trading-induced risks” of factor k,
or simply “price sensitivity to risks.” By equation (8), we can express λk as follows:

λk =
∆pk

q̂kvar(b⊤
k r)

. (9)

Here, ∆pk represents the price response of factor k at time 1. The denominator, q̂kvar(b⊤
k r),

measures the change in the quantity of risk due to the marginal demand shock to the factor.
Consequently, λk measures the price sensitivity to risks induced by demand shocks and
captures the marginal risk–return tradeoff conditional on trading. This concept extends the
canonical price of risk, which reflects the unconditional risk–return tradeoff. Note that in
our simple model, λk is not a function of intermediaries’ pre-existing holdings at time 1, as
we do not model nonlinear constraints (e.g., position limits).

We highlight three features of the price sensitivity to risks λk. First, because the traded
risk factors have uncorrelated returns by construction, the equilibrium solution from (7)
implies that demand shocks q̂k affect only the price of factor k. In other words, demand
shocks propagate across currencies through shared risk exposures, but not across factors.
Appendix A.2 provides a proof. This result provides the theoretical foundation for estimating
λk factor-by-factor without concern for cross-factor interactions. Second, λk is invariant to
scaling or sign reversal of a factor. This highlights that, economically, λk ≈ γk/µ reflects the
intermediaries’ risk-bearing capacity, or their per-capita risk aversion to that factor. While λk

is linked solely to γk and µ in our stylized model, the empirical estimate of λk may also reflect
other constraints that intermediaries face when accommodating trading-induced risks for
factor k. Calibrating to the estimated λk would require a more sophisticated macro-finance
model that incorporates these additional features, which is beyond the scope of this paper.
Third, the price sensitivity to risks is defined in terms of risks rather than securities, unlike
the inverse demand elasticity (∆P/P )/(∆Q/Q) commonly used in industrial organization.
Although quantities of securities are readily observable, in markets where marginal agents
optimize their portfolios to diversify risks, the quantities of risks are more relevant.

2.4 Demand Propagation Across Currencies

We now use the law of one price to connect factor-level price sensitivity with demand propa-
gation across individual currencies. Consider the scenario where currency m experiences a $1
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demand shock (a one-dollar change to f̂m), while customers’ demand for all other currencies
remain constant. First, as in equation (6), this additional $1 demand shock to currency
m would increase the demand shock q̂k to factor k by an amount βm,k. Second, changes
in factor-k demand shock affect its price by ∆pk = λkvar(b⊤

k r) (Proposition 1). Finally,
changes in factor-k price ∆pk affect currency-n price ∆p̂n through the law of one price, with
the sensitivity being βn,k. The partial derivative ∂∆p̂n/∂f̂m measures this demand propa-
gation and is referred to as the “cross-multiplier.” Proposition 2 derives the model-implied
cross-multiplier, and Appendix A.3 provides a proof.

PROPOSITION 2 (Demand propagation). The cross-multiplier between currencies n

and m is:

∂∆p̂n

∂f̂m
=

K∑
k=1

∂q̂k

∂f̂m
× ∂∆pk

∂q̂k
× ∂∆p̂n

∂∆pk
=

K∑
k=1

βm,k × λkvar(b⊤
k r)× βn,k. (10)

The model-implied cross-multiplier has two features. First, the own-multiplier

∂∆p̂n

∂f̂n
=

K∑
k=1

β2
n,k × λkvar(b⊤

k r) (11)

is always positive as long as λk is positive. Positive λk indicates that intermediaries are
averse to bearing trading-induced risks rather than risk-seeking. On the other hand, the
cross-multiplier between two currencies could be negative, if the currencies have opposite
signs of beta loading to a factor, which reflects complementarity. We return to this point
empirically in Section 6.

Second, the cross-multiplier as channeled through traded risk factors is symmetric between
any two currencies n and m, as shown by

∂∆p̂n

∂f̂m
=

∂∆p̂m

∂f̂n
. (12)

This symmetry arises because
∂q̂k

∂f̂n
= βn,k =

∂∆p̂n
∂∆pk

. (13)

The first equality, relating currency to factors in terms of quantity, follows from our portfolio
theory (6), while the second equality, relating currency to factors in terms of price, results
from the law of one price. Both relationships are governed by the beta of currency n to
factor k, which gives rise to the symmetry.
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3 Data

To identify traded risk factors, we need data on FX trading and returns. In this section, we
outline the various data sources that we use.

3.1 Trading Data

Our FX trading data come from the CLS Group (CLS), which provides settlement services
for FX trades conducted by its 72 settlement members, primarily large multinational banks.17

As the largest single source of FX execution data, CLS covers over 50% of global FX volumes.
We use daily aggregate FX order flow data from CLS, which includes the total value of

buy and sell orders between Banks and their customers in 17 currencies from September 2012
to December 2023.18 The currencies in our sample are: U.S. dollar (USD), Australian dollar
(AUD), Canadian dollar (CAD), Swiss frank (CHF), Danish kroner (DKK), Euro (EUR),
British pound (GBP), Hong Kong dollar (HKD), Israeli shekel (ISL), Japanese yen (JPY),
Korean won (KRW), Mexican peso (MXN), Norwegian kroner (NOK), New Zealand dollar
(NZD), Swedish kroner (SEK), Singaporean dollar (SGD), and South African rand (ZAR).
All trades involve Banks as one counterparty, where Banks include bank-affiliated dealers and
hedge funds transacting through prime brokers. We interpret Banks’ trading as representing
the activities of the specialist intermediary in our model. Counterparties to Banks are
grouped into three categories: Funds (e.g., mutual funds, pension funds, sovereign wealth
funds), Non-bank Financials (e.g., insurance companies, clearing houses), and Corporates.

To measure the total FX risk borne by intermediaries, we are the first to jointly analyze
the CLS flows data on FX spot (e.g. Ranaldo and Somogyi, 2021; Roussanov and Wang,
2023) alongside data on FX forwards and swaps. Due to the pronounced negative correla-
tion between flows into spot versus forward and swap, excluding either can underestimate
the price sensitivity to risks (see Supplemental Appendix B). The CLS forward and swap
data are organized by maturity buckets. We estimate FX spot exposure from these future-
settled contracts by discounting the notional using forward rates.19,20 Aggregating across

17A list of settlement members can be found at https://www.cls-group.com/communities/
settlement-members/.

18Both the number of currencies covered and the sample start date are constrained by CLS data avail-
ability.

19Conceptually, FX swaps should not expose intermediaries to currency risk, as the spot and forward legs
offset each other in notional amounts. However, a small amount of currency risk remains after discounting
the forward leg. Our results are effectively unchanged if swaps are excluded.

20Specifically, we use the 1-week forward rate for contracts maturing in 1-7 days, the 1-month forward
rate for contracts maturing in 8-35 days, the 3-month forward rate for contracts maturing in 36-95 days,
and the 1-year forward rate for contracts maturing in more than 96 days. The choice for these rates reflects
bucket maturity ranges and forward contract liquidity.
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spot, forward, and swap, we construct the USD-valued total daily net customer inflow for
each currency.

To align with our instruments, we analyze trading and return at the weekly frequency.
Weekly flows are calculated by summing daily flows from Thursday to the following Wednes-
day. Our final trading data is a panel spanning 2012-09-06 to 2023-12-31, consisting of weekly
net inflow into 16 non-USD currencies, measured in USD, across spot, forward, and swap
transactions.

3.2 Return Data

We obtain the forward and spot data for the 16 non-USD currencies in our sample from
Bloomberg. All prices are recorded at the London close. The CLS trading data also follow
London business hours.

We define the weekly currency return as the result of borrowing USD at the US risk-free
rate, converting to foreign currency at the spot exchange rate, earning the foreign risk-free
rate, and converting back to USD at the future spot rate. For currency n from week t to
t + 1, we define rt+1,n = st+1,n − st,n + it,n − it,USD − xt,n = st+1,n − ft,n, where s is the
log spot rate, f is the log forward rate, i is the net risk-free rate, and x is the deviation
from the covered interest-rate parity (CIP). Exchange rates are defined as USD per one unit
of foreign currency, so a higher s corresponds to USD depreciation. Our currency return
includes the CIP deviation, xt,n = ft,n − st,n − it,USD + it,n, to more accurately reflect the
actual return that intermediaries have when absorbing customer flows, including inventory
costs from balance sheet constraints.

3.3 Other Data

We collect sovereign bond auction data to instrument for FX demand shocks. Specifically,
we source announcement information on auctions of bonds with maturities of one year or
longer from government websites in the U.S., Australia, Canada, France, Germany, Italy,
Japan, and the U.K.

To construct excess returns in five non-FX asset classes, we use the following data. For
credit default swaps (CDS), we obtain five Markit indices from Bloomberg (North America
investment grade and high yield, Europe main and crossover, and Emerging Market), with
returns defined from the seller’s perspective. For commodities, we use six Bloomberg com-
modity futures return indices (energy, grains, industrial metals, livestock, precious metal,
and softs). For corporate bonds, we use four Bloomberg indices on U.S. corporate bonds by
credit rating (Aa, A, Baa, high yield; excluding AAA to avoid collinearity with the risk-free
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rate). For options, we calculate leverage-adjusted option portfolio returns on S&P 500 call
and put prices from OptionMetrics, following Constantinides, Jackwerth, and Savov (2013).
For US Treasury bonds, we use yields of the six maturity-sorted “Fama Bond Portfolios”
from CRSP, excluding Treasury bills due to correlation with the risk-free rate. Finally, we
use the 1-month U.S. Libor as a proxy for the risk-free rate.

The Bloomberg CDS data begin in 2007, OptionMetrics data end in December 2022, and
all other asset classes data span January 2000 to December 2023.

4 Traded Risk Factors in FX

In this section, we identify the most traded FX factors from data. We first find that three
risk factors account for most of the non-diversifiable risks induced by FX trading. We then
interpret these factors as the Dollar, the Carry, and the Euro-Yen. Finally, we show that
these factors cannot be obtained by the standard PCA on returns or flows alone.

4.1 Baseline Traded FX Factors

Our objective is to identify risk factors that capture the effect of FX trading on currency
prices in the cross-section. To this end, we focus on factors that maximally explain trading-
induced risks. Using the procedure detailed in Section 2.2, we derive the traded FX factors
from weekly net flows (f) and log returns (r) of 16 non-USD currencies.21 The three factors
that explain the most amount of trading-induced risk are reported in Table 1. Each column
of Table 1 represents a factor, and the component values are the currency weights in this
factor. For example, in Factor 1, for every $1 bought, $0.15-worth of CAD and $0.5-worth of
EUR are sold.22 Because the identified risk factors are traded, they place greater weight on
widely traded currencies. Notably, six developed economy currencies — AUD, CAD, CHF,
EUR, GBP, and JPY — have consistently high weights across the top three factors; they
are highlighted in red along with USD. Of the total trading-induced non-diversifiable risks,∑K

k=1 var(qk)var(b⊤
k r), the top three traded FX factors individually account for 65%, 16%,

and 9%, respectively. Jointly, these three factors explain approximately 90% of the risks
intermediaries bear when accommodating trading flows. The traded FX factors are stable
over time. Table SA3 in the Supplemental Appendix shows that the returns and flows of

21We use aggregate flows across all customer types to identify total trading-induced risks from the inter-
mediaries’ perspective. Trades from different customers may carry different informational content but pose
the same balance-sheet or inventory risk.

22To facilitate comparison, we have scaled such that factor 1 has a weight of 1 for USD, factor 2 has all
positive weights sum to 1 and all negative weights sum to -1, and factor 3 has a weight of -1 for JPY. Note
that the portfolio weight of USD is the negative sum of the weights of all other currencies.
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Table 1: Top 3 Traded FX Factors

Currency Factor 1 Factor 2 Factor 3

AUD -0.08 0.14 -0.08
CAD -0.15 0.56 -0.87
CHF -0.03 -0.07 -0.02
DKK -0.01 0 0.02
EUR -0.5 -0.43 1.16
GBP -0.11 0.18 0.09
HKD 0 -0.01 0.02
ILS 0 0 0
JPY -0.07 -0.49 -1
KRW -0.01 0.01 -0.01
MXN -0.01 0.02 -0.03
NOK -0.01 0.02 -0.01
NZD -0.01 0.02 -0.01
SEK -0.01 0.01 -0.01
SGD -0.01 0 0.02
ZAR -0.01 0.01 -0.01
USD 1 0.03 0.74

Var explained 65% 16% 9%

Notes: This table presents the portfolio weights of the top 3 traded FX factors, constructed following the
procedure in Section 2.2. The return and flow data for 16 non-USD currencies are weekly from September 2012
to December 2023. The portfolio weight of USD is computed as the negative sum of the weights of all other
currencies.

factors recovered from the full sample are highly correlated with those recovered from the
pre-2020 or the post-2020 subsamples. Indeed, the correlations are nearing 1 for the first
factor and exceeding 0.8 for the other two.

4.2 Interpretation of Traded FX Factors

To better understand the risks captured, we conjecture and verify that the top three traded
FX factors represent the Dollar, the Carry, and the Euro-Yen, respectively. Factor 1 in
Table 1 assigns negative weights to all non-USD currencies, resembling the proverbial Dollar
portfolio that shorts all non-USD currencies to bet on the USD exchange rate. We there-
fore propose a traded Dollar factor that goes long in USD and shorts the six most traded
currencies (AUD, CAD, CHF, EUR, GBP, and JPY) in equal weights. Factor 2 has posi-
tive weights on high-interest-rate currencies (e.g., AUD, CAD, GBP) and negative weights
on low-interest-rate currencies (e.g., JPY, CHF, EUR), consistent with the proverbial Carry
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Table 2: Correlation between Return and Flow for Baseline PC Factors versus
for Proposed Economic Factors

Factor 1 Factor 2 Factor 3

Return 0.98 0.95 0.92
Flow 1.00 0.99 0.95

Var explained by
Economic Factors 63% 15% 8%

Notes: This table shows the correlation between return and flow for the baseline traded FX factors in
Table 1 (“PC Factors”) and for the traded FX factors constructed from the proposed factor weights of
the Dollar, the Carry, and the Euro-Yen (“Economic Factors”). It also shows the fraction of trading-
induced risks explained by the Economic Factors.

portfolio that exploits violations of uncovered interest-rate parity (UIP). We propose a traded
Carry factor that goes long in AUD, CAD, and GBP, and shorts CHF, EUR, and JPY, all in
equal weights. Factor 3 features a large positive weight on EUR and a large negative weight
on JPY, motivating a traded Euro-Yen factor that goes long in EUR and shorts JPY in
equal weights. The rationale is that, because EUR and JPY are traded in the same direction
in both Dollar and Carry factors, these factors do not capture the bilateral trading flows
between the Euro area and Japan, two of the world’s largest economies.

These proposed factors are economically meaningful but may be correlated. To address
this, we apply the procedure described in Section 2.2 to orthogonalize them. In particular,
this process transforms the proposed EUR-JPY pair (long EUR, short JPY) into the Euro-
Yen factor, which is uncorrelated with the Dollar and Carry factors. In other words, the
Euro-Yen factor captures the portion of non-diversifiable risk that intermediaries bear when
absorbing EUR-JPY pair trading, after hedging out exposures to the Dollar and Carry fac-
tors. Empirically, for every dollar traded in the EUR-JPY pair, 13% of the risk is attributed
to the Dollar factor, 25% to the Carry factor, and 62% to the Euro-Yen factor.

The data support our interpretation of the traded FX factors. Table 2 shows the cor-
relation between returns and flows of the baseline factors (“PC Factors”) from Table 1 and
returns and flows of the factors constructed from the proposed Dollar, Carry, and Euro-
Yen weights (“Economic Factors”). The correlations are nearly 1 for both returns and flows
across all three factors. Together, the three Economic Factors explain about 86% of trading-
induced non-diversifiable risks, closely matching the risks accounted for by the PC Factors.
Given this striking similarity and to avoid potential in-sample overfitting concerns with PC
Factors, we focus on analyzing the more interpretable Economic Factors for the remainder
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of the paper.
Panel (a) of Figure 1 plots the cumulative trading flows from customers to the three

traded FX factors.23 During our sample period, customers purchased approximately $1
trillion of the Dollar factor from intermediaries, primarily after the 2020 COVID crisis.
This provision of USD by intermediaries likely reflects USD deposits or wholesale funding
made available by (dealer-affiliated) banks (Du and Huber, 2024), as some intermediaries,
especially dealers, may not be able to maintain a sustained inventory imbalance. For the
Carry factors, customers initially refrained from large directional bets but began selling
off the Carry factor post-2022. As a result, intermediaries including dealers and hedge
funds accumulated $0.8 trillion in Carry trade exposure between 2012 and 2023. Finally,
customers sold the Euro-Yen factor up until the 2020 COVID crisis, after which they started
repurchasing some, but not all, positions. This left the intermediaries with a net positive
position in the Euro-Yen factor throughout the sample period. As JPY acts as a “funding
currency” (negative weight) in both the Carry and Euro-Yen factors, our analysis highlights
that the unwinding of intermediaries’ short JPY positions cannot solely be attributed to the
Carry trade.

Panel (b) of Figure 1 plots the cumulative returns of the three factors over our sample
period. We observe that all three factors enjoy positive returns, including the Euro-Yen
factor. We formally investigate the unconditional risk premium of these factors in Section
5.1.

4.3 Standard PCA on Returns or Flows Fails to Identify Traded Risk Factors

We demonstrate that a standard PCA applied solely to returns or flows fails to identify
the traded FX factors. The results underscore the empirical value of using our approach to
jointly analyze returns and flows.

The first three columns of Table 3 show the portfolio weights for the first three principal
components of a standard PCA applied to returns.24 The first factor resembles a Dollar
factor, with negative loadings on all currencies. The second factor assigns large positive
weights to some high-interest-rate currencies such as ZAR and MXN, and large negative
weights to some low-interest-rate currencies like CHF, JPY, and EUR. However, it also
assigns very small positive weights to other high-interest-rate currencies like AUD and NZD
and even a negative weight to GBP and NOK.25 The third factor lacks a clear economic

23Figure SA2 in the Supplemental Appendix provides a breakdown of factor flows by customer type.
24The eigenvectors from a return PCA represent individual currencies’ betas to the factors. We convert

these betas into portfolio weights using the pseudoinverse of the beta matrix, following the factor-mimicking
portfolio approach of Fama and MacBeth (1973).

25Lustig, Roussanov, and Verdelhan (2011) identify the Carry factor from the second principal component
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Figure 1: Cumulative Flow and Return of Top 3 Traded FX Factors

(a) Cumulative Flow

(b) Cumulative Return

Notes: This figure displays the cumulative flows and returns of the top three traded FX factors between
September 2012 and December 2023. Flows are measured from the perspective of customer purchases
(intermediary sales). For instance, the figure indicates that customers bought approximately $1 trillion of
the Dollar factor from intermediaries during this period.

interpretation. In contrast, our approach of jointly analyzing flows and returns yields a
significant traded risk factor that is unambiguously the Carry and reveals an economically
meaningful Euro-Yen factor.

The next three columns of Table 3 report the portfolio weights for the first three prin-
cipal components of a standard PCA applied to flows. The resulting portfolios from this
approach primarily allocate weight to a single major currency. For instance, the first factor
assigns a portfolio weight of -1 to EUR and 0 to all other non-USD currencies, reflecting

after sorting currencies into six portfolios based on interest rate levels.
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Table 3: Top 3 PCs from FX Returns or Flows

Currency Return PCA Flow PCA
PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

AUD -0.08 0.04 0.27 -0.03 0.03 0.12
CAD -0.05 0.05 0.32 -0.04 1 -0.06
CHF -0.05 -0.21 -0.51 -0.01 -0.02 -0.06
DKK -0.06 -0.15 -0.12 0 0 0.01
EUR -0.06 -0.15 -0.13 -1 -0.03 0.03
GBP -0.07 -0.08 0.47 -0.02 -0.01 0.26
HKD 0 0 0 0 -0.02 0
ILS -0.04 -0.03 0.24 0 -0.01 0
JPY -0.03 -0.17 -1 -0.04 -0.06 -0.95
KRW -0.06 0.02 -0.15 0 0.01 0
MXN -0.08 0.22 0.71 -0.01 0.01 0
NOK -0.1 -0.05 0.72 0 0.01 0.01
NZD -0.08 0.01 0.13 -0.01 0.01 0.01
SEK -0.08 -0.13 0.22 0.01 0 0
SGD -0.04 -0.03 -0.12 -0.01 -0.01 0.01
ZAR -0.11 0.29 -1.35 -0.01 0 0.01
USD 1 0.37 0.29 1.17 -0.92 0.62

Notes: The first three columns display the portfolio weights for the first three principal com-
ponents from a return PCA, while the second three columns show those from a flow PCA. The
analysis uses weekly data for 16 non-USD currencies spanning September 2012 to December
2023. The USD portfolio weight is calculated as the negative sum of the weights of all other
currencies.

that EUR/USD is the most actively traded pair. The second and third principal components
correspond to the CAD/USD and JPY/USD pairs, respectively. This outcome occurs be-
cause the flow PCA identifies portfolios based solely on the largest trading volumes, entirely
overlooking the strong factor structure in returns.

5 Pricing Properties of Traded FX Factors

In this section, we study the traded FX factors’ unconditional risk premium and their price
sensitivity to trading-induced risks.

5.1 Unconditional Risk Premium

Panel A of Table 4 reports the annualized mean returns and Sharpe ratios of the three traded
FX factors based on weekly returns from September 2012 to December 2023. Notably, the
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Table 4: Unconditional Risk Premium

Panel A: Sep 2012 to Dec 2023
Dollar Carry Euro-Yen

Mean return (annualized %) 2.38 2.15 5.26
Sharpe ratio (annualized) 0.35 0.26 0.56
Fama-MacBeth premium (annualized %) 2.42 3.34 3.58
t-stats (1.15) (1.22) (1.12)

Panel B: Jan 2000 to Dec 2023
Dollar Carry Euro-Yen

Mean return (annualized %) -0.16 2.09 1.99
Sharpe ratio (annualized) -0.02 0.23 0.20
Fama-MacBeth premium (annualized %) -0.07 3.02 1.00
t-stats (-0.04) (1.41) (0.40)

Notes: This table presents the annualized mean return and Sharpe ratio of the three
traded FX factors. Additionally, it reports the Fama-MacBeth factor premium along
with t-statistics calculated using Shanken-corrected standard errors. Panel A is based
on weekly returns from September 2012 to December 2023, while Panel B uses weekly
returns from January 2000 to December 2023.

newly proposed Euro-Yen factor achieves an annualized return exceeding 5% and a Sharpe
ratio of 0.56, both meaningfully higher than those of the other two factors. To evaluate
the cross-sectional pricing power of these factors, we estimate the Fama-MacBeth factor
premia.26 The Fama-MacBeth premia of the three factors are similar to their mean returns
estimated from the time series, though we caution that the estimated Fama-MacBeth premia
are not statistically significant, which may partly reflect that the portfolios are static and
not conditionally rebalanced as in Lustig, Roussanov, and Verdelhan (2011).

Our sample period begins in September 2012 due to the availability of CLS data. To
further explore unconditional risk premia, we extend the sample to start in 2000 (introduction
of the Euro) and report the results in Panel B. In this longer sample, the Euro-Yen factor
exhibits a time-series mean return and Sharpe ratio comparable to the Carry factor. In the
cross-section, the Carry factor demonstrates considerably stronger pricing power than the
other two factors.

26We follow the Fama-MacBeth two-step procedure: first, time-series regressions of each currency’s return
on factor returns estimate betas; second, cross-sectional regressions of average currency returns on these betas
(excluding the constant) recover the factor premium. Standard errors are corrected following Shanken (1992).

22



5.2 Price Sensitivity to Trading-Induced Risks

We aim to estimate λk, the price sensitivity to trading-induced risks of traded FX factor
k in equation (8). Because the traded FX factors are constructed to have uncorrelated
returns, the theoretical foundation in Proposition 1 ensures that λk can be estimated factor-
by-factor without concern for cross-factor substitution. However, for each factor, we must
instrument for the unobserved demand shocks that are unrelated to changes in fundamentals.
Specifically, we regress each factor’s risk-adjusted returns27 on its instrumented weekly flows,
q̂k,t:

rk,t/var(rk,t) = λkq̂k,t + ϵk,t, where (14)

qk,t = θkzk,t + ek,t, (15)

cov(zk,t, ϵk,t) = 0. (16)

The instruments (zk) for the observed factor flows (qk) must be both relevant (equa-
tion (15)) and valid (equation (16)). We propose sovereign bond auction announcements
as instruments.28 Government entities, such as the U.S. Treasury, periodically auction off
long-term debt obligations, e.g., U.S. Treasury notes and bonds. Foreign investors actively
participate in these auctions; for instance, they directly purchased on average 14% of U.S.
Treasury notes and bonds sold at auctions between September 2012 and December 2023.29

When auctions are announced about a week in advance, these announcements can prompt
foreign investors to exchange domestic currencies for local currencies, making these instru-
ments relevant.

We also argue that the instruments are valid. First, auction announcements are plausibly
exogenous to FX trading because auctions follow strong fiscal cyclicality and are largely
predetermined. For example, the U.S. Treasury Borrowing Advisory Committee (TBAC)
issues two-quarter-ahead recommendations on debt issuance for upcoming auctions. The
subsequent announcements and the eventual issuance of long-term debt (maturities of longer
than a year) rarely deviate from these recommendations (Rigon, 2024).30 Although these

27Each factor’s weekly observed return rk,t is normalized by its annualized return variance, var(rk,t), so
the regression coefficient estimates the price sensitivity to risk λk, as defined in Proposition 1. Technically,
theory implies that the variance should be measured in the absence of demand shocks. In practice, we use
realized variance because the demand shocks we study are small in magnitude and likely contribute little to
the overall return variance.

28We focus on auctions for securities with maturities of longer than a year, as short-term securities are
typically bought by domestic investors such as money market funds.

29This 14% excludes foreign purchases made indirectly through U.S. investment funds and dealers, so the
actual figure may be higher.

30Similarly, Germany’s Finance Agency releases an annual auction calendar each December, specifying
target amounts for each auction.
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auction-induced demands are predictable, they can still move prices when they materialize.
Theoretically, sophisticated investors do not find it optimal to front-run the entire expected
demand (Vayanos, 2021); empirically, demand shocks generated by anticipate stock dividend
payments nonetheless move stock prices (Hartzmark and Solomon, 2024).

Second, auction announcements plausibly satisfy the exclusion restriction that their ef-
fect on exchange rates arises solely through FX trading. Because auctions are heavily
forward-guided, announcements likely contain limited new information that would affect
fundamentals (ϵk,t). Another concern is that auction announcements might induce excess
bond trading, affecting bond prices and spilling over to FX. However, empirically, Wachtel
and Young (1990) find that while Treasury auction results move bond yield, the week-ahead
announcements have no detectable effect. Thus, any impact on FX is likely driven solely by
announcement-induced FX demand shocks.

Finally, the behavior of asset prices provides a test for the validity of our instrument.
As discussed in Section 2, valid demand shocks move currency prices initially (at time 1),
but these price effects should eventually revert (at time 2). In contrast, if the considered
demand shocks contained new information, the resulting price response would be permanent
and not revert. Empirically, Figure SA3 in the Supplemental Appendix shows that the
contemporaneous price responses of all three factors fully revert within a month.

As the traded FX factors place weights on multiple currencies, we consider sovereign
auction announcements from a panel of countries. Specifically, U.S. Treasury auction an-
nouncements instrument demand shocks to the Dollar factor; Australian, Canadian, British,
and Japanese government bond auction announcements instrument shocks to the Carry fac-
tor, and Euro-Area government bond auctions (aggregating German, French, and Italian
auctions) instrument for the Euro-Yen factor. For each factor, we aggregate the offered
amount across all announcements in a week, consistent with FX trading flows.31 Finally, we
remove any linear trend in auction sizes over time.

Table 5 presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors.
For all three factors, the estimated price sensitivity to trading-induced risks is positive and
statistically significant. Recall that the regression (14) normalizes each factor’s return by
its variance. As a result, the estimated λk captures the price response to one unit of risk
induced by $1 billion of factor flow and is directly comparable across factors. Both OLS and
IV estimates show that the price sensitivity to risks is the smallest for the Dollar, higher for
the Carry, and highest for the Euro-Yen. This indicates that intermediaries bear marginal

31To instrument for factor flows in week t, we use same-week announcements for the Dollar and Carry
factors and announcements from weeks t− 1 and t for the Euro-Yen factor. This longer window accounts for
potential delays in auction-induced currency conversion, as Germany, France, and Italy do not allow direct
bids from foreign investors.
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Table 5: Estimated Price Sensitivity to Trading-Induced Risks

Dollar Carry Euro-Yen
OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

Factor flow 0.072∗∗∗ 0.107∗∗∗ 0.132∗∗∗ 0.138∗∗ 0.139∗∗∗ 0.335∗
(0.009) (0.037) (0.018) (0.064) (0.021) (0.195)

Response per $B (bps) 3.4 5.0 8.9 9.3 12.2 29.3
1st stage F-stat 24.8 6.5 3.8
Anderson-Rubin CI (0.01, 2.39) (0.09, 1.91)
Observations 590 386 590 228 590 560

Notes: This table presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors, based on
regression (14). The response of factor prices to demand shocks, measured per billion dollars, is calculated as
the product of λk and the annualized return variance. The IV regressions report the first-stage heteroscedas-
ticity and autocorrelation consistent (HAC) effective F-statistics and the Anderson-Rubin confidence intervals
at the 90% confidence level. The estimation period spans September 2012 to December 2023, excluding the
first half of 2020. Newey-West standard errors are reported in parentheses, where the bandwidth is chosen by
the Newey and West (1994) selection procedure. *p <.1; **p <.05; ***p <.01.

risks most effectively in the Dollar factor, with their risk-bearing capacity progressively lower
for the Carry and the Euro-Yen. Viewed through Proposition 1, the cross-factor variation
in price sensitivity to risks may reflect differences in available arbitrage capital across risk
factors, with lesser-known factors like Euro-Yen attracting less arbitrage capital. Indeed,
the annualized volatility of trading flows absorbed by intermediaries is highest for the Dollar
factor ($85 billion), followed by the Carry factor ($ 34 billion), and lowest for the Euro-Yen
factor ($22 billion). The OLS estimates are slightly smaller than the IV estimates, reflecting
the instrument’s role in mitigating bias from the correlation between information-driven
price changes ϵk,t and contemporaneous customer flows qk. This correlation is negative,
likely because customers trade against fundamentals: they buy when news causes a currency
to depreciate and sell when it appreciates. Such behavior is consistent with the profitability
of momentum strategies in FX (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012).32

To compare the magnitude of our estimated price sensitivity to risks with the literature,
we multiply each factor’s λk by its return variance to calculate the factor-level price response
per billion of demand shocks, as shown in the second row of Table 5. A $1 billion demand
shock increases the prices of the Dollar, Carry, and Euro-Yen factors by 5, 9, and 29 basis

32In a rational market, prices would adjust to fundamental news without trading (Milgrom and Stokey,
1982). However, when customers buy in response to negative fundamental news, prices under-react, leading
to subsequent price drift and generating momentum.
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points, respectively.33 These price responses are large compared to U.S. equities, where a $1
billion demand shock to the entire U.S. stock market raises the aggregate price by about 1.7
bps (Gabaix and Koijen, 2021).34 We think that the supply of FX arbitrage capital is likely
limited due to the specialized nature of the FX market, where only sophisticated participants
like bank dealers and hedge funds absorb demand shocks.35 This may seem counterintuitive
given the large turnover in FX, but up to 75% of trades occur between intermediaries (BIS,
2022), suggesting that the arbitrage capital available to absorb shocks is much smaller than
the total turnover.36

Because our estimates are obtained through IV analysis, which reflect the local average
treatment effect, we caution against extrapolating our estimates to much larger demand
shocks, such as quantitative easing. Nevertheless, our results can be informative about the
effect of larger interventions. Specifically, as our estimates are based on relatively small,
high-frequency shocks, intermediaries likely absorb these shocks with a risk-bearing capacity
that is fixed in the short-run. If there are larger shocks, however, intermediaries may expand
their capacity (e.g., bank-affiliated dealers could tap into the banks’ broader balance sheets).
Such global re-optimization likely leads to a smaller average price response per unit of risk,
as the price impact function may be concave (Hasbrouck, 1991; Chaudhry and Li, 2025).
Our estimates thus form an upper bound for the price impact of larger shocks.

Additionally, because the price impacts of these factor-level demand shocks revert within
a month, Appendix B derives an expression for the share of return variance contributed by
trading volatilities over different horizons. Applying this formula across the three factors,
we find that flows account for about 10–35% of variance at the 1-week horizon, 5–15% at
one month, and fade quickly thereafter. These results confirm that demand shocks are a
meaningful yet short-lived source of return volatility.

Finally, the precision of IV estimation depends on the strength of the instrument. The
heteroscedasticity and autocorrelation consistent (HAC) effective F-statistics for the Dollar,
the Carry, and the Euro-Yen factors are 24.8, 6.5, and 3.8, respectively. The effective F-

33In a dynamic setting, the persistence of demand shocks can influence price response, as intermediaries
anticipate future demand (e.g., Campbell and Kyle, 1993; Wang, 1993; Jansen, Li, and Schmid, 2024). Our
estimates reflect the average level of persistence over the sample period.

34Gabaix and Koijen (2021) find that a 1% greater demand shock to the entire US stock market increases
price by 5%. Given an average market capitalization of $31.7 trillion between 2012 and 2022, a $1 billion
demand shock raises the price of the market factor by 1.7 bps over our sample period.

35The limited FX arbitrage capital may also reflect slow-moving capital and the fact that our price
sensitivity to risks is estimated based on a weekly horizon, shorter than the monthly or quarterly horizons
typically considered in the literature. Asset markets tend to be more inelastic over shorter horizons as
long-term investors are slower to react to price changes and provide arbitrage capital (Duffie, 2010).

36Of the FX trades accounted for in the BIS Triennial Central Bank Survey, 46% are between reporting
dealers, 22% with non-reporting dealers, and 7% with hedge funds, all of which are intermediaries in our
model and captured in Banks in the data.
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statistics for the Carry and the Euro-Yen are below the rule-of-the-thumb threshold of 10.
To assess the implications of potentially weak instruments on IV inference, we compute the
Anderson-Rubin confidence interval, which has the correct coverage regardless of the strength
of the instrument (Andrews, Stock, and Sun, 2019). For both the Carry and the Euro-Yen,
the Anderson-Rubin confidence interval is bounded away from zero, but is very wide in the
positive direction. In other words, we are reasonably confident that the price sensitivity to
risks is not zero but much less certain that the true value is not larger. A larger estimate
would mean an even greater price sensitivity to risk.

5.3 Time-Varying λ and the Role of Risk

Our representative intermediary framework posits that price responses to trading stem from
intermediaries’ sensitivity to risk. In the previous subsection, we discussed patterns in the
estimated λ consistent with this view — for instance, specialization may limit arbitrage
capital and risk-bearing capacity, resulting in larger price responses. In this subsection, we
seek more direct evidence that risk drives observed price responses to trading. Specifically, we
examine whether λ depends on time-varying wealth or constraints that alter intermediaries’
risk-return trade-off.

We consider two proxies. First, we use intermediary equity returns to capture intermedi-
aries’ wealth.37 Second, we use deviations from covered interest-rate parity (CIP) to capture
intermediaries’ constraints, as such deviations indicate intermediaries’ inability to exploit
known profitable trades.38

Table 6 presents potential determinants of the Dollar factor’s weekly return. We em-
phasize the state-dependency of the Dollar factor’s λ, as the Dollar is the most traded FX
factor and its flow instrument exhibits the highest statistical power. Column (1) suggests
that the Dollar factor reflects variations in intermediary equity returns. However, Column
(2) clarifies that intermediary equity returns do not directly affect the Dollar’s return. In-
stead, they influence λ, consistent with a risk-based view of price response: as intermediaries’
wealth increases, their effective risk aversion decreases, reducing the price response to ab-
sorbing demand shocks (instrumented using U.S. Treasury auction announcements). This
state-dependent response is driven specifically by intermediaries’ wealth, as Columns (3)
and (4) show that broader stock market returns have no comparable effect on λ. Concep-

37Following He, Kelly, and Manela (2017), we construct the value-weighted weekly return of primary
dealers’ bank holding companies. This series is highly correlated (0.95) with the KBW NASDAQ bank index
over our sample period and is equivalent to the intermediary capital ratio shock (0.98 correlation) in He,
Kelly, and Manela (2017).

38We calculate the weekly average cross-currency basis using the AUD-JPY currency pair and 3-month
IBOR.
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Table 6: Time-Varying λ for the Dollar Factor

Weekly Return of Dollar Factor
(1) (2) (3) (4) (5) (6)

Intermed. ret -0.490∗∗∗ -0.109
(0.119) (0.204)

Flow × Intermed. ret -0.091∗∗∗
(0.033)

S&P ret -0.148 -0.077
(0.096) (0.314)

Flow × S&P ret 0.006
(0.074)

CIP deviation 0.081 0.182
(0.060) (0.177)

Flow × CIP deviation 0.063
(0.129)

Factor flow 0.096∗∗∗ 0.106∗∗∗ 0.160∗
(0.037) (0.040) (0.093)

Observations 559 385 559 385 559 385

Notes: This table reports the IV-estimated time-varying λ for the Dollar factor. “Interm.
ret” is the value-weighted weekly equity return of primary dealers’ bank holding company.
“S&P ret” is the weekly return of the S&P 500 index. “CIP deviation” is measured by
the weekly average AUD-JPY 3-month IBOR cross-currency basis. All three variables
are demeaned and standardized. All factor flows are instrumented with U.S. Treasury
auction announcements. Newey-West standard errors are reported in parentheses, where
the bandwidth is chosen by the Newey and West (1994) selection procedure. *p <.1; **p
<.05; ***p <.01.

tually, intermediaries’ constraints may also affect price response: when constraints prevent
intermediaries from fully exploiting profitable investment opportunities, they become more
selective, leading to higher effective risk aversion and lower risk-bearing capacity. Empiri-
cally, the effects of such constraints, proxied by CIP deviations, are directionally consistent
with the risk-return trade-off but, as shown in Column (6), not statistically significant.

6 Demand Propagation Across Currencies and Asset Classes

In this section, we use the traded FX factors’ estimated price sensitivity to risks to study
the propagation of demand shocks among currencies and asset classes. We quantify demand
propagation with cross-multipliers: the effect of a shock to demand for one asset on the price
of another, holding all other demand constant.
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Figure 2: Decomposition of Currency Returns Explained by Traded FX Factors

Notes: This figure plots the R2 of regressing currency-level returns against the returns of the Dollar, the
Carry, and the Euro-Yen factors in the time series. It plots the marginal R2 values attributed to each factor
and labels the total R2. The positive and negative signs illustrate the direction of the beta loadings.

6.1 Demand Propagation Across Currencies

For a traded FX factor to affect currency-level cross-multipliers, the currencies must load
on the factor. Figure 2 demonstrates the relevance of the traded FX factors in explaining
individual currency returns. Regressing currency-level returns on the returns of the Dollar,
the Carry, and the Euro-Yen factors in the time series, we plot the marginal R2 attributed
to each factor, which are additive because the factor returns are orthogonal by construc-
tion. The positive and negative signs in the plot indicate the direction of each currency’s
beta loading on each factor. Together, the three factors explain between 69% and 94% of
individual currency returns.

The decomposition in Figure 2 provides a framework to analyze the risk implied in
demand shocks. For instance, when a customer buys $1 of AUD from intermediaries, Figure
2 shows that intermediaries attribute 60% of the total risk to the Dollar factor, 10% each
to the Carry and Euro-Yen factors, and 20% to idiosyncratic risk unexplained by the three
factors. The direction of factor loadings further reveals that intermediaries perceive the
customer’s $1 purchase (and their $1 sale) of AUD as the customer selling the Dollar and
Euro-Yen factors while buying the Carry factor.

Combining the information in Figure 2 with the IV estimated price sensitivity to risks λk,
we compute the cross-currency multipliers according to Proposition 2 and report the results
in Table 7. For clarity, we have arranged the six major currencies (AUD, CAD, GBP, CHF,
EUR, JPY) in the upper left quadrant, followed by the other ten currencies in the sample.
Each entry shows the price response in one row (column) currency, in basis points, to a $1
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billion demand shock to the corresponding column (row) currency. For instance, the entry of
7.9 in the first row and second column indicates that a $1 billion demand shock to the CAD
(AUD) raises the price of AUD (CAD) by 7.9 bps (in percentage terms), holding the demand
for all other currencies equal. Because the model-implied cross-multiplier is symmetric, we
report only the upper half. The diagonal entries represent each currency’s own multiplier.
As discussed in relation to the literature, the diagonal multipliers in Table 7 reflect price
responses due to the three most traded FX factors; they exclude price impacts arising from
changes in a currency’s idiosyncratic risk.

Table 7 reveals several interesting patterns of cross-currency multipliers. First, all entries
are positive. This is because all currencies load on the Dollar factor in the same direction,
which is the most traded risk factor in the cross-section. Second, the cross-multiplier between
currencies on the long leg of the Carry trade (e.g., AUD, CAD, GBP) and those on the
short leg (e.g., CHF, EUR, JPY) is generally smaller. The modest cross-multipliers reflect
opposite beta loadings with respect to the Carry factor, which makes currencies in one group
effective hedges for the Carry risk exposure of the other group. In short, these two groups are
“complements” in their exposure to the Carry risk factor. Third, we note that although EUR
and JPY are both low-interest-rate currencies, we estimate a rather small cross-multiplier
because the two currencies are on the opposite side of the Euro-Yen factor. This result
suggests that EUR and JPY are not entirely substitutable.

Moreover, although we analyze traded FX factors constructed based on the six major
currencies and USD, we recover meaningful cross-multiplier in other currencies due to these
currencies’ loadings on the three traded FX factors. Finally, as a sanity check of our method-
ology, we examine the cross-multiplier for HKD, a currency pegged to USD within a narrow
band of 1%. While we do not use this pegged information in our estimation, the estimated
cross-multipliers in the entire column and row associated with HKD are close to zero. This
minimal impact reflects the nature of a pegged currency: its own demand shocks have neg-
ligible risk implications for other currencies, and its exchange rate relative to USD is largely
unaffected by demand shocks to other currencies.

6.2 Demand Propagation Across Asset Classes

If other asset classes load on the traded FX factors, demand shocks can propagate through
shared FX exposures. We analyze five non-FX asset classes: credit default swap (CDS),
commodities (Comm), corporate bonds (CorpBond), options (Opt), and US Treasury bonds
(UST).39 Similar to Figure 2, we regress the monthly excess returns of each asset class

39We exclude equities because Haddad and Muir (2021) show that intermediation in equities differs
considerably from FX, suggesting different marginal investors. While traded FX factors may partially explain
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Figure 3: Decomposition of Asset-Class Returns Explained by Traded FX
Factors

Notes: This figure plots the R2 of regressing individual asset’s monthly excess returns against the returns of
the Dollar, the Carry, and the Euro-Yen factors in the time series. It plots the marginal R2 values attributed
to each factor and labels the total R2. The positive and negative signs illustrate the direction of the beta
loadings. The estimation period is from 2000-02 to 2023-12. The returns from CDS are available starting in
2007-04. The returns from Opt end in 2022-12.

from 2000-02 to 2023-12 on the Dollar, Carry, and Euro-Yen returns, and present the R2

decomposition in Figure 3.40,41

The three traded FX factors jointly explain between 15% (commodities) and 37% (corpo-
rate bonds) of the returns in the five non-FX asset classes we examine. The high explanatory
power of traded FX factors is not an artifact of crisis-period comovements. As shown in Fig-
ure SA4 of the Supplemental Appendix, results based on returns excluding the 2007–09
Financial Crisis and the COVID-19 period are largely similar. Interestingly, while the Dollar
factor is statistically significant across all five asset classes, it is least important in explaining
the return of U.S. Treasury bonds (Treasurys).42 Moreover, while all other asset classes load
positively on the Carry factor, Treasurys load negatively. This contrast suggests that large
shocks to the Carry factor could drive divergent price movements between Treasurys and
other assets. Finally, while the Euro-Yen factor is less prominent in non-FX asset classes, it

equities returns, their price sensitivities are likely different in equities.
40We construct the return of each asset class as the equal-weighted average return of all available portfolios;

see also Section 3.3.
41By construction, the correlation among weekly factor returns is zero. The correlation among monthly

factor returns is close to zero. We report the incremental R2 by adding the factors sequentially in the order
of the Dollar, the Carry, and the Euro-Yen.

42One possible reason for this attenuated connection is that foreign investors hedge a substantial amount
of the USD FX risks associated with their securities holdings, especially bonds (Du and Huber, 2024).
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Table 8: Demand Propagation Across Asset Classes Through Shared FX Risks

CDS Comm CorpBond Opt UST

CDS 2.4 3.5 3.2 4.7 -0.5
Comm 8.9 6.0 7.7 0.7
CorpBond 4.8 6.5 -0.2
Opt 9.3 -0.6
UST 0.7

Notes: This table uses Proposition 2, the estimated factor-level price sensitivity to risks
λk from Table 5, and the beta loadings of assets to factors (signs illustrated in Figure
3) to compute asset-level cross-multiplier. Each entry represents the percentage price
change in bps of a row (column) asset, as induced by a $1 billion demand shock to
a column (row) asset, holding the demand for all other assets equal. As noted after
Proposition 2, the model-implied cross-multiplier is symmetric, so we report only the
upper half.

explains a non-negligible fraction of returns in corporate bonds.
Similar to Table 7, we report cross-multipliers between asset classes in Table 8.43 Ex-

amining the last column of Table 8, we recover two salient features of Treasurys while using
only assets’ factor loadings and factors’ price sensitivity to risks. First, the price response to
a demand shock is smallest for Treasurys, corroborating the observation that the Treasury
market is deep and liquid. Second, Treasurys uniquely exhibit negative cross-multipliers
with most other asset classes. A $1 billion demand shock to Treasurys raises their price
but depresses the price of other assets, reflecting Treasurys’ “safe haven” property. Our es-
timation captures this behavior because only Treasurys load negatively on the commonly
priced Carry factor, making them an effective hedge against other asset classes during shifts
between “risk-on” and “risk-off” regimes.

We raise two cautions in interpreting our estimated cross-asset multipliers. First, our
estimates capture only demand propagation across asset classes through exposure to the
three traded FX factors. They may not represent the total price response to a $1 demand
shock to an asset, as these assets may also be exposed to other shared risks that we do
not capture. Second, by using λk from the traded FX factors to inform multipliers in other
asset markets, our analysis implicitly assumes that the marginal intermediaries are the same
across different markets. Departures from this assumption may alter the magnitude but not
the mechanism of demand propagation.

43The cross-multiplier between the traded FX factors and these five non-FX asset classes are reported in
Table SA4 of the Supplemental Appendix.
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7 Conclusion

In conclusion, this paper studies the propagation of demand shocks through traded risk
factors. If asset prices respond to risks and marginal investors can diversify risks across
assets, then demand shocks propagate by affecting non-diversifiable risks, as captured by
traded risk factors. We identify the most traded risk factors by extending the concept of
priced non-diversifiable risks (Ross, 1976) to a representative intermediary framework (He
and Krishnamurthy, 2017) and developing a method that integrates trading and returns
data.

Applying the method to FX, we uncover the Dollar, the Carry, and the Euro-Yen Residual
factors. These three factors explain 90% of the non-diversifiable risk intermediaries absorb
in FX trading, and IV estimates show factor prices rise by 5–30 basis points per $1 billion
of factor demand. Hence, a demand shock to one currency propagates by changing the
demand for these traded risk factors, affecting first the factors’ prices and then the price of
other currencies with shared exposures. The same logic leads to demand propagation across
non-currency assets through shared currency risk. In short, we link trading quantities and
asset prices (Froot and Ramadorai, 2008; Koijen and Yogo, 2019) through risks, underscoring
the role of common risk in cross-asset dynamics (Haddad and Muir, 2021; Du, Hébert, and
Huber, 2023).

A distinguishing feature of our paper is the use of traded risk factors to inform demand
propagation across 17 currencies and 5 major non-FX asset classes. The mechanism rests on
three empirically measurable objects: how demand shocks change non-diversifiable risks (q);
how prices adjust to compensate intermediaries for absorbing additional risks (λ); and how
each asset is exposed to these risks (β). Integrating these elements reveals rich transmission
patterns, where demand shocks in one market propagate to others with varying magnitudes
and even directions. As asset markets become increasingly interconnected, understanding
how demand shocks propagate through common risk exposure is crucial for predicting and
managing systematic market dynamics.
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A Appendix for Proofs

This appendix provides proofs omitted in the main text.

A.1 Solution for Traded Risk Factors

In this appendix, we present solutions for traded risk factors in Section 2.2.
We conduct Cholesky decomposition of var(r) as U⊤U. Then, we define gk = Ubk for

each factor k. Equation (1) implies that the factor-level flow is

qk = (b⊤
k var(r)bk)

−1b⊤
k var(r)f = (g⊤

k gk)
−1g⊤

k Uf . (A1)

Moreover, the sequential optimization problem (3) becomes

max
gk

(g⊤
k gk)

−1var(g⊤
k Uf) (A2)

s.t.g⊤
k gj = 0 for k ̸= j.

This becomes a standard PCA problem that is solved by the eigenvalue decomposition of the
matrix var(Uf) (Jolliffe, 1986). The eigenvectors are gk and the corresponding eigenvalues
are proportional to the fraction of explained variance. Once we obtain gk, the portfolio
weights are obtained by bk = U−1gk.

A.2 Proof of Proposition 1

Simplifying equation (7), we have

E

[
− exp

(
−

K∑
k=1

γkyk(b
⊤
k R−RF∆pk

)]

= − exp

[
−

K∑
k=1

(
γkykE[b⊤

k R]− γkRFyk∆pk − γ2
ky

2
kvar(b⊤

k R)/2
)]

, (A3)

where the last equality uses the fact that cov(b⊤
k R,b⊤

j R) = 0 for k ̸= j. Taking the first-
order condition with respect to yk and evaluating it at the optimal yk = −q̂k/µ, we obtain

∆pk =
var(b⊤

k R)γkq̂k/µ+ E[b⊤
k R]

RF

. (A4)

Using the fact that ∆pk = 0 when q̂k = 0, along with the assumption that var(r) = var(R),
we derive equation (8).
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A.3 Proof of Proposition 2

Because factors have uncorrelated returns by equation (3), we can project the return of any
currency n onto the factors and obtain

rn =
K∑
k=1

βn,kb
⊤
k r+ en, (A5)

where en is the idiosyncratic return of currency n that is uncorrelated with any factor b⊤
k r.

Hence, by the law of one price and equation (8), the price response of currency n is

∆p̂n =
K∑
k=1

βn,k∆pk =
K∑
k=1

λkq̂kvar(b⊤
k r)βn,k. (A6)

Therefore, we have

∂∆p̂n
∂q̂k

=
∂∆pk
∂q̂k

× ∂∆p̂n
∂∆pk

= λkvar(b⊤
k r)× βn,k. (A7)

Next, equation (6) implies that ∂q̂k/∂f̂m = βm,k. Hence, we have proved

∂∆p̂n

∂f̂m
=

K∑
k=1

∂q̂k

∂f̂m
× ∂∆p̂n

∂q̂k
=

K∑
k=1

βm,k × λkvar(b⊤
k r)× βn,k. (A8)

B Fraction of Return Variance Explained by Factor Flows

This appendix measures how much of each factor’s return variance comes from factor flows.
Equilibrium flows may carry information, so price impacts have two parts: a permanent
information component and a temporary demand component. Our estimate λk captures the
demand component, and we have shown that its impact reverts within one month. We now
compute, across different horizons, the share of return variance explained by this temporary
effect. As the horizon lengthens, the temporary impact decays and accounts for a smaller
fraction of total variance.

Consider stochastic trading flow over the horizon [0, T ]. During an infinitesimal interval
dt, the flow shock for factor k has standard deviation σ(qk,t)

√
dt, where σ(qk,t) is the annu-

alized flow volatility. Each unit of flow moves the price by λkσ(rk,t)
2, with σ(rk,t) denoting

the annualized return volatility. Hence the contemporaneous price change generated by the
shock equals λk σ(rk,t)

2 σ(qk,t)
√
dt. Assuming this impact decays linearly to zero within one

month (1/12 years), a shock arriving at time t still affects the price at the terminal date
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Figure A1: Factor flow contribution to return variance

Notes: This figure displays the share of return variance that comes from the impact of flow, which is derived
in equation (A10).

T by the factor max{0, 1 − 12(T − t)}. Accordingly, the proportion of the terminal price
variance attributable to order flow is∫ T

0
(max{0, 1− 12(T − t)}λkσ(rk,t)

2σ(qk,t))
2
dt∫ T

0
σ(rk,t)2dt

, (A9)

which measures the share of total variance over [0, T ] that arises from temporary price
impacts of order-flow shocks. This fraction simplifies to

λ2
kσ(rk,t)

2σ(qk,t)
2(1− 12T + 48T 2) 0 < T ≤ 1

12
,

λ2
kσ(rk,t)

2σ(qk,t)
2

36T
T >

1

12
.

(A10)

Figure A1 shows that for the three factors, flows explain roughly 10–35% of return vari-
ance at the 1-week horizon, 5–15% at one month, and rapidly less at longer horizons.
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Supplemental Appendix of
“Demand Propagation Through Traded Risk Factors”

A Invariance of Factors under Alternative Numeraire Currency

In this appendix, we prove that the factors constructed in Appendix A.1 remain unchanged
when we alter the numeraire currency used to measure demand shocks and returns.

Suppose we switch from using USD to the N -th currency as the numeraire. We denote
the demand shock from the N -th currency to the n-th currency as f̃n for n = 1, 2, . . . , N −1,
and the demand shock from the N -th currency to USD as f̃N . Recall that fn represents
the demand shock from USD to the n-th currency. Because each demand shock fn (for
n = 1, 2, . . . , N − 1) can be broken down into a component from USD to the N -th currency
and another from the N -th currency to the n-th currency, we can express this transformation
as follows:

f̃ = (f̃1, f̃2, . . . , f̃N−1, f̃N)
⊤ =

(
f1, f2, . . . , fN−1,−

N∑
n=1

fn

)⊤

= Cf , (SA1)

where we define the matrix

C :=



1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0

−1 −1 . . . −1 −1


. (SA2)

Similarly, returns are now measured relative to the N -th currency. Specifically, r̃n for
n = 1, 2, . . . , N −1 represents the return from borrowing at the N -th currency’s riskfree rate
to invest in the n-th currency’s riskfree rate. Similarly, r̃N denotes the return from borrowing
at the N -th currency’s riskfree rate to invest in the USD riskfree rate. The transformation
of returns can thus be described as follows:

r̃ = (r̃1, r̃2, . . . , r̃N−1, r̃N)
⊤ = (r1 − rN , r2 − rN , . . . , rN−1 − rN ,−rN)

⊤ = C⊤r. (SA3)

Now, we apply Appendix A.1 to analyze the factors using r̃ and f̃ . Specifically, the
variance of r̃, given by var(r̃) = C⊤var(r)C, can be decomposed as C⊤U⊤UC = Ũ⊤Ũ,
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where Ũ := UC. Subsequently, the eigenvalue decomposition is transformed to

Ũvar(f̃)Ũ⊤ = UCCvar(f)C⊤C⊤U⊤ = Uvar(f)U⊤, (SA4)

where we use the fact that CC = IN . This derivation reveals that the eigenvectors gk and
eigenvalues are invariant. The resulting portfolio weights under the new numeraire currency
are given by b̃k = Ũ−1gk = C−1U−1gk = C−1bk. Hence, the factor returns also remain
invariant, because b̃⊤

k r̃ = b⊤
k (C

−1)⊤C⊤r = b⊤
k r.

B Inclusion of Non-spot FX Derivatives Trading Flows

Foreign exchange trades can be executed in the spot market and in the derivatives market
of forwards and swaps. Trading in the derivatives market can expose the intermediary to
foreign exchange risk. Consider a customer-initiated trade of selling $100-worth of JPY
1-month forward against USD. In the absence of other trades, an intermediary who has
no capital, maintains a net neutral FX exposure, and serves as the counterparty in this
trade, must satisfy the obligation to deliver $100 in a month by setting aside $100/(1+ r$1M)

today, where r$1M is the 1-month USD risk-free rate. Similarly, the intermediary will sell
100/(1 + rJPY

1M ) of JPY today to both fund his USD purchase and to ensure FX neutrality
when he receives the promised delivery from the customer. To the intermediary, therefore,
a forward contract is no different from a spot transaction but for the fact that the amount
of implied FX exposure in a forward is less than its notional.

Because we are interested in measuring all the FX risks that intermediaries have to bear
by accommodating customer trading flows, we need to consider trading flows in both the spot
and the derivatives market.44 In this appendix, we explore the difference between trading
flows into the spot versus the derivatives market and the implications of using trading data
in only one of the two markets in our analysis.

We start by examining the observed trading flows into individual currencies. The triennial
survey conducted by the Bank of International Settlement (BIS) indicates that there is twice
as much trading flow in the FX derivatives market as in the spot market (Appendix Figure
SA1). Appendix Table SA1 reports the correlation between the net flow into the spot versus
the derivatives market for each of the six major currencies in our sample. The absolute
strength of the correlation ranges between 0.17 and 0.62, suggesting sizeable comovements
in trading flows between the spot and the derivatives FX market.

Comovements in observed trading flows could be induced by common risk factors that
44We treat swaps as a spot transaction plus a forward contract.
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Figure SA1: FX Daily Turnover Against USD

Notes: This figure plots the global daily volume of foreign exchange spot versus forward and FX swaps
transactions involving USD. Daily volume is calculated as the average of all trading days in April of the
survey year. The survey is conducted triennially from 2001 to 2022 by BIS.

Table SA1: Currency-Specific Correlation between Net Trading Flow in Spot vs.
Non-Spot Derivatives

AUD CAD CHF EUR GBP JPY
-0.48 0.17 -0.54 -0.39 -0.62 -0.35

Notes: This table reports the correlation between net flows into individual cur-
rencies in the spot market and in the non-spot derivatives market.

are present in both the spot and the derivatives market. If so, trading data from either
market alone should be sufficient to recover the traded FX risk factors. At the same time,
if there are strong comovements in trading flows to the traded FX factors, then relying on
data from only one market risks introducing measurement error in the estimation of price
sensitivity to risks.

In Appendix Table SA2, we compare the traded FX factors recovered separately from
the spot market and the non-spot derivatives market. The top row shows the correlation
between returns of factors estimated using only one of the individual markets. For the first
factor, the return correlation is close to 1, and this correlation is 77% for the second factor
and 73% for the third factor. Such pronounced relationships underscore the robustness of
the underlying factors and suggest that the same risk factors drive trading across the spot
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Table SA2: Correlation between Returns and Flows to Factors Estimated in
Different Samples

Factor 1 Factor 2 Factor 3
Return 0.99 0.77 0.73
Flow -0.51 -0.13 -0.35

Notes: This table reports the correlation between the re-
turns and flows to each of the top three traded risk factors
as estimated in the spot market versus in the non-spot
derivatives market.

and the derivatives market. The bottom row shows the correlation between flows to factors
estimated using only one of the individual markets. The correlations are -0.51, -0.13, and
-0.35 for the three factors, respectively.

The marked association between factor returns and factor flows points to the strength
and limitation of using only data in the spot market. On the one hand, the tight correlation
between factor returns constructed using data from individual markets shows that the spot
market alone is sufficient to recover the underlying risk factors because these factors drive
trading in both the spot and derivatives markets. On the other hand, using only data
from the spot market is likely insufficient for estimating these factors’ price sensitivity to
risks because the spot market data alone may not provide an appropriate measure of the
flow changes. Estimating price sensitivity to risks requires instrumenting for the flow that
induces the observed price change. As spot flows and derivatives flows are highly correlated,
it is empirically difficult to isolate variations in just the spot flow. Specifically, because factor
flows in the spot market are negatively correlated with factor flows in the derivatives market,
instrumenting for just the spot market will overestimate factor flows, biasing the estimate
to imply smaller price sensitivity to risks.

C Additional Figures and Tables
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Table SA3: Correlation Between Traded FX Factors in Full Sample vs.
Subsamples

Factor 1 Factor 2 Factor 3

Return Pre 2020 0.97 0.83 0.83
Post 2020 1.00 0.97 0.89

Flow Pre 2020 0.98 0.82 0.81
Post 2020 0.99 0.96 0.81

Notes: In this table, we report the correlation between returns and flows of the traded FX
factors constructed based on the full sample versus returns and flows of the traded FX factors
constructed based on different subsamples. Pre-2020 refers to the sample period from September
2012 to December 2019, while post-2020 refers to the sample period from January 2020 to
December 2023.

Table SA4: Demand Propagation Between Traded FX Factors and Non-FX
Asset Classes

CDS Comm CorpBond Opt UST

Dollar -2.0 -5.0 -2.8 -4.4 -0.5
Carry 3.7 1.6 3.7 6.1 -2.3
Euro-Yen -2.5 -10.3 -7.3 -6.6 -1.6

Notes: This table uses Proposition 2, the estimated factor-level price sensitivity to risks
λk from Table 5, and the beta loadings of assets to factors (signs illustrated in Figure
3) to compute cross-multiplier between traded FX factors and six non-FX asset classes.
Each entry represents the price movement in bps of a column asset, as induced by a $1
billion demand shock into a traded FX factor.
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Figure SA2: Cumulative Flow by Investor Type to Traded FX Factors

(a) Dollar Factor

(b) Carry Factor

(c) Euro-Yen Factor

Notes: This figure displays the cumulative flows by customer type into the top three traded FX factors
between September 2012 and December 2023. The Net Total represents the net customer flows that Banks
(intermediaries) need to absorb. SA.6



Figure SA3: Reversion of Contemporaneous Price Response

Notes: This figure shows the cumulative price responses for the traded FX factors. These responses, measured
per billion of demand shocks, are estimated by regressing the return from week t−1 to t+h (for h = 0, 1, 2, 3, 4)
on the instrumented flow from week t−1 to t. The shaded area represents the 95% confidence interval based
on Newey-West standard errors with the bandwidth selected according to the Newey and West (1994)
procedure.

Figure SA4: Decomposition of Asset-Class Returns Explained by Traded FX
Factors Outside of Crises

Notes: This figure decomposes the returns of individual assets into the Dollar, the Carry, and the Euro-Yen
factors. The decomposition is achieved by regressing asset class monthly average excess return between 2000-
02 and 2023-12 on returns from the three traded FX factors. We exclude the GFC (2007-07 through 2010-07)
and COVID (2020-01 through 2020-06) period. The returns from CDS are available starting 2007-04. The
returns from Opt end in 2022-12. It reports both the marginal R2 values attributed to each factor and the
total R2. The positive and negative signs illustrate the direction of the beta loadings.

SA.7


	Introduction
	Theoretical Framework
	Model Setup
	Factor Construction
	Price Sensitivity to Trading-Induced Risks
	Demand Propagation Across Currencies

	Data
	Trading Data
	Return Data
	Other Data

	Traded Risk Factors in FX
	Baseline Traded FX Factors
	Interpretation of Traded FX Factors
	Standard PCA on Returns or Flows Fails to Identify Traded Risk Factors

	Pricing Properties of Traded FX Factors
	Unconditional Risk Premium
	Price Sensitivity to Trading-Induced Risks
	Time-Varying  and the Role of Risk

	Demand Propagation Across Currencies and Asset Classes
	Demand Propagation Across Currencies
	Demand Propagation Across Asset Classes

	Conclusion
	Appendix for Proofs
	Solution for Traded Risk Factors
	Proof of Proposition 1
	Proof of Proposition 2

	Fraction of Return Variance Explained by Factor Flows
	Invariance of Factors under Alternative Numeraire Currency
	Inclusion of Non-spot FX Derivatives Trading Flows
	Additional Figures and Tables


