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Abstract
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1 Introduction

Covered interest rate parity (CIP) violations following the Global Financial Crisis (GFC)

have been interpreted as a sign that intermediaries are constrained (e.g. Du et al. (2018b),

Avdjiev et al. (2019), Fleckenstein and Longstaff (2018), Hébert (2018)). The intermediary

asset pricing literature argues that constraints on intermediaries have important implications

for asset prices (see, e.g., Kondor and Vayanos (2019), and He and Krishnamurthy (2017) for

a survey). In this paper, we use CIP violations to measure the extent to which constraints

bind, and provide direct evidence that the risk of constraints becoming tighter is priced. Our

results offer novel evidence in support of intermediary-based asset pricing.

Following the GFC, new regulations (e.g. the Basel III leverage ratio rule and the U.S.

supplementary leverage ratio) were introduced that require banks to maintain a minimum

capital ratio against all assets, regardless of their risk characteristics. These leverage ratio

constraints have been one of the most binding constraints facing large global banks post-

GFC (Duffie (2017)). As a result, low-margin, balance-sheet-intensive, risk-free arbitrage

conditions such as CIP can fail to hold. We use the term “balance sheet cost” to refer to the

shadow cost associated with these constraints.1

The existence of liquid foreign exchange (FX) and interest rate derivatives across granular

maturities allows us to directly measure innovations to the shadow cost of the relevant

constraint from the term structure of CIP deviations. In particular, the difference between

the ex-post realized short-term CIP deviation and the ex-ante forward-implied short-term

CIP deviation is a measure of the “shock” to the shadow cost of the constraint.
1Because short-term CIP arbitrage trades have little mark-to-market risk, we interpret these deviations

as primarily reflecting the shadow cost of non-risk-weighted capital constraints. However, nothing in our
analysis proves that it is these constraints, and not other constraints, that bind with respect to cross-currency
basis trades, and we do not rely on this interpretation in our empirical analysis.
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We begin by considering a standard intermediary asset pricing model, augmented with

a regulatory constraint. Because this model features arbitrage (CIP violations), there is no

a single stochastic discount factor (SDF) that prices all assets. Nevertheless, every asset

can be priced using an SDF (not the same for each asset) that is a function of the return

on intermediary wealth and the magnitude of a cross-currency basis (i.e. a CIP violation).

These SDFs differ only in terms of their mean, and that mean is a function of the assets’

weight in the relevant regulatory constraint. Consequently, shocks to the cross-currency basis

are innovations to the SDFs that price each asset. We argue that the most straightforward

test of this model is a test of whether “forward CIP trading strategies” that bet on arbitrages

becoming smaller earn excess returns.

We then proceed to the data, and estimate the excess returns of these forward CIP trading

strategies. We define the forward CIP trading strategy as using FX forwards and forward-

starting interest rate swaps to conduct a forward-starting CIP trade, and then unwinding

the trade at its forward starting date. Consider a trader who, at time t, first enters into a

forward-starting CIP trade to go long Japanese yen and short Australian dollars for three

months between t+ 1 and t+ 4, with the currency risk fully hedged. We refer to this trade

as a one-month forward three-month CIP trade. Then in a month, at t + 1, the trader

unwinds the forward CIP trade by going long Australian dollars and short Japanese yen for

three months, cancelling all the promised cash flows of the forward CIP trade. The profits

of this two-step forward CIP trading strategy are proportional to the difference between the

market-implied one-month forward three-month CIP deviation observed at t and the actual

three-month CIP deviation realized one month later at t + 1. The forward CIP trading

strategy has a positive (negative) return if the future CIP deviation is smaller (bigger) than

the market-implied forward CIP deviation today.
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The expected return on the forward CIP trading strategy offers a direct test of intermedi-

ary asset pricing theories in which large positive CIP deviations indicate that intermediaries

are very constrained, because the forward CIP trading strategy pays off poorly in these

constrained states. If the constraints of financial intermediaries are indeed a priced factor,

we should expect the forward CIP trading strategy to earn positive excess returns on aver-

age, as a risk premium to compensate investors for bearing the systematic risk exposure to

variations in the shadow cost of intermediary constraints.

We find a significant risk premium for certain forward CIP trading strategies during

the post-GFC period. Specifically, we study our forward CIP trading strategy for seven of

the most liquid currencies: Australian dollar (AUD), Canadian dollar (CAD), Swiss franc

(CHF), euro (EUR), British pound (GBP), Japanese yen (JPY), and U.S. dollar (USD). We

consider both the cross-currency basis vis-à-vis the USD and the basis between two non-USD

cross pairs.

Our model emphasizes the importance of the currency pairs with the largest spot cross-

currency bases. We show that the average returns of the forward CIP trading strategies

for these pairs are generally sizable and statistically significant post-GFC. In particular, the

forward CIP trading strategy for the "classic carry" AUD-JPY pair has annualized average

profit equal to 16 basis points and an annualized Sharpe ratio of roughly 1.2. In contrast,

the mean return of the AUD-JPY forward CIP trading strategy pre-GFC is negligible.

We also examine the performance of the forward CIP trading strategies for portfolios

of currency pairs. The returns of the forward CIP trading strategy (henceforth "forward

CIP returns") are significant and positive post-GFC for portfolios of currency pairs with

large interest rate differentials and large spot cross-currency bases. In contrast, we do not

find evidence of risk premia when using a dollar strategy that equally weights all currencies
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vis-à-vis the USD. The strong performance of the carry and the basis portfolios and the

lack of signi�cance of the dollar portfolio are consistent with our model's prediction that the

largest CIP violations are most informative about intermediary constraints. We also �nd

that a portfolio based on the �rst principal component of the largest bases exhibits return

characteristics that are similar to portfolios based on carry.

Intermediary constraints, if present, should a�ect many asset markets beyond the FX

market. We show that CIP deviations are correlated with the �rst principal component of

various other near-arbitrages. We also show that the returns of the forward CIP trading

strategy are correlated with the proxies for intermediary wealth returns of He et al. (2017).

However, the correlation between the forward CIP return and the intermediary equity

return measure of He et al. (2017) cannot explain the risk premium we uncover. We demon-

strate this in regressions and more formally using the Bayesian factor model comparison

method of Chib et al. (2020). These results justify the inclusion of the forward CIP return

as an additional factor (along with the intermediary wealth return) in the SDF, consis-

tent with our model. In particular, our results suggest that intermediaries are risk-tolerant

and perceive strategies that perform poorly when investment opportunities are best to be

especially risky.

We then test whether the excess returns of the tradable factors in this SDF (intermediary

equity and the forward CIP return) are consistent with the prices of risk implied by the cross-

section of assets, in an exercise building on He et al. (2017) and related to Hu et al. (2013)

and Pasquariello (2014).2 We cannot reject the hypothesis that this risk is priced consistently

across the various asset classes we consider, even when pooling across asset classes.

2We focus on arbitrage opportunities post-GFC, which we attribute to constraints on �nancial interme-
diaries resulting from post-GFC regulations, whereas Hu et al. (2013) and Pasquariello (2014) study mostly
pre-GFC price dislocations attributable to transaction costs, stale prices, and related issues. Their results
can be seen as demonstrating that marginal utility is high when transaction costs are high.
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Our paper sits at the intersection of literature on arbitrage and on intermediary asset

pricing. Recent empirical work on CIP violations (e.g. Du et al. (2018b)) has documented

the existence and time series properties of spot CIP arbitrages, as well as the quarter-end

dynamics of these arbitrages (the leverage ratio calculation only relies on quarter-end bank

balance sheets in many non-U.S. jurisdictions).3 Spot CIP arbitrage opportunities exist at

very short horizons (e.g. overnight), making it di�cult for any risk-based story to explain

the existence of these arbitrages. This di�erentiates our work from the large literature on

"limits to arbitrage" that focuses the convergence risk.4 Instead, short-dated CIP deviations

can exist because ofconstraints on intermediaries, and in particular, non-risk-weighted total

leverage constraints in the post-GFC regulatory environment. Other authors, including

Boyarchenko et al. (2018), also attribute the existence a broad class of arbitrages post-GFC

to the leverage ratio constraints. Fleckenstein and Longsta� (2018) link the cash-derivative

basis in the interest rate future market to the cost of renting �nancial intermediary balance

sheet space. Hébert (2018) interprets these arbitrages through an optimal policy framework.

We broaden this burgeoning literature on constraints-induced arbitrage by studying the

term structure of arbitrage violations, as opposed to spot arbitrage violations, and empha-

sizing the general asset pricing implications of these deviations. In particular, we show that

a signi�cant fraction of the time-series variation in spot CIP violations is anticipated by

3Besides Du et al. (2018b), there has been a large recent literature on CIP deviations post-GFC. For
example, Borio et al. (2016) argue that hedging demand of di�erent national banking systems can help explain
cross-sectional variations in CIP deviations. Rime et al. (2019) discuss the role of market segmentation in
explaining CIP violations. Anderson et al. (2019) measure the amount of potential arbitrage capital available
to global banks for CIP arbitrage. Liao (2019) �nds that CIP deviations post-GFC a�ects the corporate
sector's funding currency decision. Avdjiev et al. (2019) examine the relationship between CIP deviations,
the dollar exchange rate, and the cross-border bank �ows in dollars. Du et al. (2018a) and Jiang et al.
(2018), and Krishnamurthy and Lustig (2019) use the CIP deviations for government bond yields to measure
convenience yield di�erentials between safe-haven government bonds and study implications for exchange
rate dynamics. Augustin et al. (2020) model the term structure of CIP deviations.

4See e.g. Shleifer and Vishny (1997), Liu and Longsta� (2003), Duarte et al. (2007) and Du�e (2010).
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the forward curve of CIP violations. This is true both generally and with respect to the

quarter-end spikes documented in Du et al. (2018b).

Within the intermediary asset pricing framework (surveyed by He and Krishnamurthy

(2017)), models such as Gabaix and Maggiori (2015) and Fang (2018) feature intermediary

constraints as explanations of exchange rates dynamics. Much of this literature considers

constraints that limit intermediaries' ability to access investments with favorable risk/return

trade-o�s, whereas we emphasize constraints (such as non-risk-weighted leverage constraints)

that inhibit true arbitrages. In this respect, our model builds on Garleanu and Pedersen

(2011). We also contribute to this literature by emphasizing the importance of intertemporal

hedging considerations, following Campbell (1993) and Kondor and Vayanos (2019), whereas

much of the literature (e.g. He and Krishnamurthy (2011), Garleanu and Pedersen (2011),

and He et al. (2017)) relies on log utility for intermediaries and neglects these considerations.

In taking the model to the data, we are building on He et al. (2017), Adrian et al. (2014),

Hu et al. (2013), and Haddad and Muir (2020). Our model can be thought of as nesting the

SDFs discussed by Adrian et al. (2014) and He et al. (2017). When risk aversion is equal to

one, the intertemporal terms in our SDF vanish, and the intermediary wealth return is the

SDF (as in He et al. (2017)). When risk aversion is equal to zero (the risk-neutral case), the

SDF consists only of intertemporal hedging terms, which are proxied for by the shadow cost

of intermediary constraints (as in Adrian et al. (2014)). We measure these shadow costs using

CIP violations, which we argue in the context of our model is a clean and valid measure.

In contrast, Adrian et al. (2014) measure these shadow costs using leverage. It is not clear,

however, whether the price of leverage risk comes from its correlation with intermediary

wealth returns, its correlation with intermediary shadow costs, or some combination thereof.

Closer in spirit to our exercise is Hu et al. (2013), who measure intermediary constraints
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using Treasury yield curve dislocations. A comparison to this approach reveals the second

key advantage of using CIP violations to measure shadow costs: we can directly estimate

the price of risk from our forward arbitrage trading strategy, instead of relying on the usual

cross-sectional asset pricing analysis. We focus our analysis on this direct estimate of the

price of risk, and verify in our cross-sectional analysis that the price of risk we infer from

the cross-section is consistent with the price of risk we estimate directly.

2 Hypothesis and Model

In the empirical analysis that follows, we will test the hypothesis that changes in the mag-

nitude of cross-currency bases (i.e. CIP violations) are priced. This hypothesis is motivated

by a speci�c intermediary asset pricing model, which we outline below and detail in the

Internet Appendix Section B. Our paper is primarily an empirical study; the purpose of the

model is to motivate our hypothesis and to provide a framework to interpret our results.

However, we should acknowledge at the outset that there are other possible interpretations

of our empirical results, some of which we discuss after presenting those results.

Our model is designed to capture three key ideas:

1. Arbitrage violations measure investment opportunities. This is true in our model

because arbitrage violations can exist only if constraints on intermediaries bind, and

constraints on intermediaries bind only if they prevent those intermediaries from taking

advantage of investment opportunities (this is the de�nition of �bind�).

2. Investment opportunities are likely to be best when intermediary wealth is low. For this

reason alone, if our empirical proxies for intermediary wealth are imperfect, we should

expect changes in arbitrage violations to be a priced risk controlling for imperfect
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wealth proxies.

3. Even holding wealth �xed, changes in investment opportunities can be a priced factor.

In the presence of good investment opportunities, the marginal value of wealth might

be high, because it allows intermediaries to take advantage of those opportunities, or

it might be low, because good investment opportunities enable larger payouts. The

sign of this e�ect is determined by the intermediary's intertemporal hedging concern.

The model is a discrete time version of He and Krishnamurthy (2011) that incorporates a

regulatory constraint (building on He and Krishnamurthy (2017)) and intertemporal hedging

considerations (following Campbell (1993)). Under this regulatory constraint, each asset that

the intermediary can hold (indexed byi 2 I ) is subject to an asset-speci�c weightki . As a

result, each asset the intermediary owns is priced by a log SDFmt+1 of the form

mt+1 = � t (ki ) � 
r w
t+1 + � jx t+1 ;1j; (1)

where r w
t+1 is the return on the manager of an intermediary's wealth portfolio andjx t+1 ;1j

is the absolute value of a one-period cross-currency basis. The dependence of the mean of

the SDF on ki re�ects the e�ect of the regulatory constraint, and jx t+1 ;1j serves as a proxy

for future investment opportunities. Note that assets with di�erent risk weightski will be

priced by di�erent SDFs, leading to arbitrage opportunities; however, all of these SDFs agree

on the risk prices
 and � .

The SDFs in (1) nest the SDFs discussed in Adrian et al. (2014) and He et al. (2017).

When 
 = 1, � = 0, and the SDF is exactly the intermediary wealth return as in He et al.

(2017). When
 = 0, � > 0, meaning that the marginal value of wealth is high when future
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investment opportunities are best (as in Adrian et al. (2014)).5

Our hypothesis is that � is economically and statistically distinguishable from zero. The

key idea behind this hypothesis is that the cross-currency basisjx t;1j is both a literal arbitrage

and a measure of the investment opportunities available to intermediaries at timet. An

arbitrage can exist only if intermediaries are constrained and cannot take advantage of

an otherwise attractive investment opportunity. In the presence of such constraints, an

intermediary concerned with hedging against changes in future investment opportunities

should perceive assets whose returns are correlated withjx t+1 ;1j as particularly risky or safe,

depending on the sign of the intermediary's intertemporal hedging concerns.

Campbell (1993) shows that SDFs with the form of (1), interpretingjx t+1 ;1j as an arbitrary

random variable as opposed to a cross-currency basis and without a mean that depends on

ki , can be derived using CRRA or Epstein-Zin preferences (and assuming log-normality and

homoskedasticity). In this case,jx t+1 ;1j must proxy for the revision in expectations about

future investment opportunities. That is,

jx t+1 ;1j � E t [jx t+1 ;1j] /
1X

j =1

� j (E t+1 � E t )[r w
t+1+ j ]:

The sign of the coe�cient � depends on whether the relative risk aversion6 coe�cient 
 is

greater or smaller than one (
 < 1 , � > 0). Intertemporal hedging concerns on their own

can be used to justify any SDF, including the ones we consider. Our point is that there are

speci�c reasons to expect arbitrage violations to predict future investment opportunities.

5Adrian et al. (2014) build on Brunnermeier and Pedersen (2009) (e�ectively a three-period model), and
therefore summarize investment opportunities with single future return. Adrian et al. (2014) also assume
investment opportunities are negatively correlated with intermediary leverage; it is not a priori clear this
should be the case, but it holds in the Brunnermeier and Pedersen (2009) model.

6As discussed in Campbell (1993), this result holds for both CRRA and Epstein-Zin preferences. That
is, it is 
 and not the elasticity of intertemporal substitution coe�cient that determines the sign of � .
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Suppose the manager of an intermediary has CRRA or Epstein-Zin preferences and holds

an equity claim on the intermediary.7 The intermediary is subject to a regulatory constraint,

X

i 2 I

ki j� i
t j � 1: (2)

Here, � i
t is the intermediary's holding of asseti at time t as a share of the intermediary's

equity, and ki is the asset-speci�c weight mentioned above. This constraint captures some

of the key features of leverage ratios and risk-weighted capital requirements. First, to the

extent that the ki di�er across assets, the constraint can capture risk-weights. Second, the

constraint is relaxed by increasing the level of equity �nancing relative to debt �nancing,

holding �xed the dollar holdings of each asset. Third, the constraint can omit entirely certain

assets such as derivatives, consistent with how some leverage constraints and risk-weighted

capital constraints operate. To simplify our exposition, we will assume in what follows that

derivatives are not included in the regulatory constraint.8

The manager's �rst-order condition for the portfolio share� i
t is

E t [exp(mt+1 )(Ri
t+1 � Rb

t )] = � RC
t ki sgn(� i

t ); (3)

wheremt+1 is the manager's log SDF,Ri
t+1 is the gross return on asseti , Rb

t = exp(r b
t ) is the

gross rate on the intermediary's debt between datest and t + 1, sgn(�) is the sign function,

7We follow He and Krishnamurthy (2011) in assuming that the manager must hold an equity claim of a
certain size to avoid moral hazard. For the remainder of this section, we will assume that this constraint does
not bind. We make this assumption both for simplicity and to emphasize that the regulatory constraint can
bind even if the equity constraint does not. For formulas that extend to the case with a binding constraint,
and a more detailed discussion of this issue, see Internet Appendix Section B.

8This particular functional form follows He et al. (2017). Its details are not essential for our result; in
particular, we could easily accommodate a constraint that treats long (� i

t > 0) and short (� i
t < 0) positions

asymmetrically. Considering regulatory constraints that include derivatives complicates the analysis but
does not alter the main predictions of the model that we will take to the data.
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and � RC
t is the (scaled) multiplier on the regulatory constraint.9 Let us apply this equation

to two portfolios of assets: the cross-currency basis arbitrage and the wealth portfolio.

Let St denote the exchange rate at timet (in units of foreign currency per U.S. dollar), and

let Ft;1 denote the one-period ahead forward exchange rate. We de�ne the spot one-period

cross-currency basis as

X t;1 =
Rb

t

Rc
t

Ft;1

St
� 1

whereRc
t is the foreign currency risk-free rate, and letx t;1 = ln (1 + X t;1) be the log version.

The �rst order condition is, taking absolute values,

E t [exp(mt+1 + r b
t )]j1 � exp(� x t;1)j = � RC

t kc; (4)

wherekc is the risk-weights of the foreign currency risk-free bond.

The key takeaway from this equation is that the absolute value of the cross-currency

basis can be used to measure the shadow cost of the regulatory constraint. Intuitively,

if an arbitrage opportunity is available to the intermediary, the intermediary would take

advantage of it if it could; therefore, the intermediary must be constrained. The size of the

arbitrage opportunity can be used to measure the degree to which the constraint binds (a

point emphasized by Hébert (2018)).

Let us now consider the �rst-order condition applied to the entire wealth portfolio (i.e.

taking the � i
t -weighted sum of Equation (3) across the various assets). In this case, by the

de�nition of the constraint,

E t [exp(mt+1 )(exp(r w
t+1 ) � exp(r b

t ))] = � RC
t : (5)

9In the particular case in which � i
t = 0 , we have the usual inaction inequalities, � � RC

t k i �
E t [exp(mt +1 )(Ri

t +1 � Rb
t )] � � RC

t k i (see Internet Appendix section B).
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This equation captures the intuition that the shadow cost of the constraint is equal to the

marginal value of the forgone investment opportunities. The constraint binds only if the

intermediary has valuable investment opportunities it cannot exploit due to the constraint.

Combining these two equations to eliminate the shadow cost,

E t [exp(mt+1 )(exp(r w
t+1 � r b

t ) � 1)]
E t [exp(mt+1 )]

=
j1 � exp(� x t;1)j

kc
:

That is, the arbitrage available at timet can measure the investment opportunities available

at time t. Log-linearizing and assuming homoskedasticity (see (A1) in Internet Appendix

Section B for details),

(E t+1 � E t )[r w
t+1+ j ] = ( E t+1 � E t )[r b

t+ j + k� 1
c jx t+ j; 1j]:

Thus, revisions in expected future cross-currency bases measure revisions in future invest-

ment opportunities more generally. Moreover, these e�ects are ampli�ed by leveragek� 1
c .

Because innovations to the cross-currency basis are persistent, we can proxy for revisions

in expectations about jx t+ j; 1j with the innovation to jx t+1 ;1j. This result, combined with

intertemporal hedging, justi�es the SDFs of Equation (1).

This argument (described in more detail in the Internet Appendix) motivates our em-

pirical exercise, which attempts to measure price of cross-currency basis risk (� ). The most

direct way to estimate this price of risk is to study a derivative contract whose payo� is linear

in jx t+1 ;1j. If such a contract has an excess return that cannot be explained by the covariance

betweenjx t+1 ;1j and the other parts of the hypothesized SDF (i.e.r w
t+1 ), we should conclude

that innovations in the cross-currency basis are indeed a priced risk factor (or at least cor-

related with an omitted factor). The forward CIP trading strategy that we construct in our
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empirical analysis is exactly this derivative contract. The following remarks discuss some

basic insights from the model that guide our empirical analysis.

Correlation between Factors. The two factors in our SDFs (the intermediary wealth re-

turn and the basis) likely move together. Because our model treats asset prices as exogenous,

it makes no predictions about this co-movement. Most general equilibrium intermediary asset

pricing models (e.g. He and Krishnamurthy (2011)) predict that investment opportunities

are best for intermediaries precisely when intermediaries have lost wealth, and hence we

should expect a negative correlation between the two factors.

Omitted Factors. Equation (1) likely omits important elements of the SDF. Any factor

that predicts revisions in expectations about future investment opportunities (about the

future cross-currency basis, future risk-free rates, or, in a heteroskedastic model like Campbell

et al. (2018), future volatility) should also enter the SDFs.

Noisy Intermediary Wealth Return Measures. Our proxies for intermediary wealth

returns are measured with noise. For this reason, we will never be able to de�nitively

prove that the excess returns we document are caused by intertemporal hedging concerns

as opposed to by correlation with intermediary wealth returns that is not captured by our

proxies. Moreover, in light of the point on omitted factors above, any atheoretical factor

that has explanatory power above and beyond our two SDF factors can be rationalized

either as providing a better measure of intermediary wealth returns or as a proxy for future

investment opportunities. We refrain from running �horse race� regressions with additional

factors because of this lack of a clear interpretation.
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Sources of Variation. Our model shows that the shadow cost of regulatory constraints

can be measured with CIP violations, but is silent on why CIP violations vary over time.

We expect that supply shocks (low intermediary net worth), demand shocks (e.g. changing

customer preferences), and changes in the structure of the regulatory constraint will all

a�ect the shadow cost of the constraints on intermediaries. Our results demonstrate that,

regardless of what is driving changes in these shadow costs, the SDFs of Equation (1) should

price the assets available to the intermediary.

CIP vs. Other Arbitrages. Our model places no special emphasis on CIP violations.

Any arbitrage that intermediaries engage in could be used to measure� RC
t . In subsection 5.1,

we argue that among various arbitrages and near-arbitrages documented in the literature,

CIP violations are unique in terms of our ability to accurately measure the spot arbitrage

x t and to construct a trading strategy that directly bets onx t becoming larger or smaller

in the future. We also document that spot CIP violations are highly correlated with other

arbitrages, consistent with our model.

Magnitudes. Shocks to the cross-currency basis are small (basis points). However, in-

termediaries are quite levered, meaning thatkc might be small, consumption-wealth ratios

for managers are likely small (meaning� is close to one), and innovations to the basis are

persistent. These forces increase the price of cross-currency basis risk, and might cause a

signi�cant fraction of the volatility of the SDFs to be attributable to innovations in the basis.

Leverage Constraints post-GFC. In our model, CIP violations can arise only if the

regulatory constraint binds for this riskless arbitrage. In the absence of a binding constraint,

CIP violations cannot exist in equilibrium, even if the inside equity constraint binds. The
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lack of CIP violations pre-GFC in the data is therefore consistent with the absence of non-

risk-weighted leverage constraints for many banks prior to the GFC. The persistence of CIP

violations and other short-term arbitrages (such as the interest rate on reserve arbitrage)

post-GFC is consistent with binding leverage constraints under Basel III.10

Heterogeneity Across Currencies. Our description of the model has emphasized a sin-

gle cross-currency basis, whereas our empirical analysis will consider a variety of currency

pairs. In the context of the model, all of the cross-currency bases that the manager invests

in will have the maximal arbitrage per unit risk weight available. Any basis that o�ers an

inferior level of arbitrage per unit risk weight will receive a zero portfolio weight. In partic-

ular, if the risk-weights are identical across currencies, the manager would invest only in the

basis with the largest arbitrage violation. In reality, there are several reasons why a smaller

measured basis might nevertheless be actively traded by intermediaries.

� Intermediaries may have some degree of market power, and face di�erent demand

curves across currencies (Wallen (2020)). Intermediaries are also heterogeneous, and

in particular have di�erent deposit bases and access to wholesale funding markets

across currencies.11

� Some regulatory metrics, such as the liquidity coverage ratio (LCR), are monitored

on the currency-by-currency basis.12 In addition, the allocation of CIP arbitrage ac-

tivities across currency pairs also a�ects the distribution of liquidity across di�erent
10Non-U.S. banks did not face a non-risk-weighted leverage ratio requirement prior to the 3% leverage

ratio requirement under Basel III. U.S. banks had a 3% leverage ratio requirement prior to Basel III, and
a 5-6% leverage ratio requirement under Basel III. During the pre-GFC period, other kinds of constraints
might have been binding, and CIP violations are not the right way to measure the shadow cost of such
constraints.

11See, for example, Rime et al. (2019) on the impact of money market segmentation on CIP deviations.
12Even though the Basel III LCR requirement is calculated at the aggregate level across all currencies,

currency-speci�c LCRs are nevertheless actively monitored by bank examiners and bank internal managers.
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entities and jurisdictions, which could make liquidity stress tests and resolution plan-

ning rules more binding (Correa et al. (2020)). These considerations would lead to the

intermediary having di�erent shadow costs for di�erent currencies.

� The meaning of the benchmark OIS rate varies across currencies, and it may be a

better proxy for the banks' borrowing/lending costs in some currencies than in others.

Heterogeneity in the basis might be caused in part by a lack of perfect comparability

of interest rates across currencies. We discuss this point in more detail in Section 4.

In our empirical analysis, we strike a balance between the literal interpretation of our

model and these real-world considerations by focusing on the currency pairs with the largest

and most robust bases.

3 Forward CIP Arbitrage

We describe the forward CIP trading strategy that bets on the size of the future cross-

currency basis in three steps. First, we revisit �spot� cross-currency bases (as in Du et al.

(2018b)), and describe the cross-currency bases based on overnight index swap (OIS) rates

that we use in our empirical analysis.13 Second, we discuss �forward� cross-currency bases,

constructed from forward-starting OIS swaps and FX forwards. Third, we introduce our

forward CIP trading strategy, which initiates a forward-starting cross-currency basis trade

but then unwinds the trade once it becomes a spot trade. This trading strategy is not itself

an arbitrage, but rather a risky bet on whether available arbitrages will become bigger or

smaller.
13For robustness, in Internet Appendix Tables A5 and A6, we also consider a forward CIP trading strategy

based on interbank o�er rates (IBOR) and forward rate agreements (FRAs) indexed to these IBOR rates.
The OIS and FRA data for the pre-GFC period appear less reliable (more missing or erroneous values) than
the data for the GFC and post-GFC periods.
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We study cross-currency bases in seven major currencies, AUD, CAD, CHF, EUR, GBP,

JPY and USD.14 We examine the bases of both individual currency pairs and portfolios of

currency pairs, although our portfolios exclude CHF due to data limitations.15 All data on

spot and forward FX rates, interest rate swaps, and FRAs are daily data obtained from

Bloomberg using London closing rates. Our dataset begins in January 2003 and ends in De-

cember 2020. We divide our data into three periods based on potentially di�erent regulatory

environments facing the intermediaries: Pre-GFC, January 1, 2003 to June 30, 2007, GFC,

July 1, 2007 to June 30, 2010, and Post-GFC, July 1, 2010 to December 31, 2020.16

Our main analysis focuses on the post-GFC period, which features a non-risk-weighted

leverage ratio constraint under the Basel III regulatory environment. This stands in sharp

contrast to the pre-GFC and GFC samples, during which bank capital constraints were

largely based on risk and riskless short-term CIP arbitrages faced no capital charge. An

important lesson from the GFC turmoil was that the ex-ante risk weights could inaccurately

re�ect risk, and in 2010 the non-risk-weighted leverage ratio requirement was drafted as

an important pillar of Basel III. Since then, the Basel III regulations have been �nalized

and gradually implemented. Even before the �nal rules took e�ect, early compliance of

Basel III was common among large banking organizations, as it takes time to re-organize

complex business activities. Regulators and bank shareholders may also have taken Basel

14We began with the G10 currencies, and excluded the Norwegian Krona (NOK) and Swedish Krona
(SEK) due to limited data availability on OIS rates and IBOR FRAs. We also exclude the New Zealand
dollar (NZD) because the OIS �oating leg for the NZD is not a market rate but rather an administered
central bank policy rate, the O�cial Cash Rate (OFR). The OFR is not equal to the actual overnight rate
in the �nancial market, which generally �uctuates 0.25% around the OFR.

15The CHF OIS reference was changed at the end of 2017 due to a lack of liquidity in the underlying
market. OIS swaps on the new index are not liquid enough for the purposes of our analysis. For this reason,
we present single currency-pair results with CHF through the end of 2017 but do not include CHF in our
results based on portfolios.

16We focus on monthly returns in our main analysis, and hence the last trading date in our sample is
November 30, 2020.
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III regulatory metrics into account even before the regulations were formally implemented.

In addition to the Basel III implementation, our post-GFC sample also features two major

�nancial crises, the European debt crisis and the COVID-pandemic induced �nancial turmoil

in March 2011. CIP deviations widened signi�cantly during both crises.17

3.1 OIS-Based Spot Cross-Currency Bases

We �rst de�ne the � -month tenor OIS-based spot cross-currency basis vis-à-vis the USD. Let

Rc
t;0;� denote the annualized spot gross� -month interest rate in foreign currencyc available

at time t, and let R$
t;0;� denote the corresponding spot rate in U.S. dollars. The middle

subscript �0� denotes a spot rate (as opposed to a forward rate). We express exchange rates

in units of foreign currency per USD. That is, an increase in the spot exchange rate at time

t, St , is a depreciation of the foreign currency and an appreciation of the USD. The� -month

forward exchange rate at timet is Ft;� .

Following convention (e.g. Du et al. (2018b)), we de�ne the� -month tenor spot cross-

currency basis of foreign currencyc vis-à-vis the USD as

X c;$
t;0;� =

R$
t;0;�

Rc
t;0;�

�
Ft;�

St

� 12
�

� 1; (6)

and the log version asxc;$
t;0;� = ln (1 + X c;$

t;0;� ). This de�nition is identical to the one employed

in our model, except that we now consider an arbitrary tenor� and use annualized interest

rates.

The classic CIP condition is thatxc;$
t;0;� = X c;$

t;0;� = 0. If the cross-currency basisxc;$
t;0;� is

positive (negative), then the direct U.S. dollar interest rate,R$
t;0;� , is higher (lower) than the

synthetic dollar interest rate constructed from the foreign currency bond and exchange rate
17See Section 4.5 for more discussion on sample splits of the post-GFC period.
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transactions.

The CIP condition is a textbook no-arbitrage condition if the U.S. and foreign interest

rates used in the analysis are risk-free interest rates. For our main analysis, we choose OIS

rates as our proxy for risk-free interest rate. The OIS rate is the �xed rate of a �xed-for-

�oating interest rate swap in which the �oating rate is an overnight unsecured rate.18

The OIS is a good proxy for the risk-free rate across maturities for several reasons. First,

the OIS allows investors to lock in �xed borrowing and lending rates for a �xed maturity,

by borrowing and lending at the nearly risk-free �oating overnight rate each day over the

duration of the contract. Second, the interest rate swaps themselves have very little counter-

party risk, because there are no exchanges of principal, only exchanges of interest. These

derivative contracts are also highly collateralized and in recently years have been centrally

cleared in most major jurisdictions. Third, OIS swaps are generally very liquid and traded

at a large range of granular maturities (unlike e.g. repo contracts).

Internet Appendix Figure A1 shows the three-month OIS-based cross-currency basis for

the six sample currencies vis-à-vis the USD between January 2003 and December 2020. The

three-month OIS basis was close to zero pre-GFC and deeply negative during the peak of the

GFC. After the GFC, OIS-based CIP deviations persisted. Among our sample currencies,

AUD has the most positive OIS basis, and JPY, CHF, and EUR have the most negative OIS

bases. Internet Appendix Figure A2 shows three-month IBOR cross-currency bases, which

follow similar patterns.

We de�ne the spot cross-currency basis between two non-USD currenciesc1 and c2 as the

18The list of overnight reference rates for the OIS and their day count conventions for the seven major
currencies currencies we study can be found in Internet Appendix Table A1. For two currencies, the OIS
rate is non-standard. For CAD, the overnight rate is a repo (secured) rate; for CHF the unsecured overnight
rate had volumes so low that the OIS rate was changed to reference a secured rate in 2017.
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di�erence in their respective log cross-currency basis vis-à-vis the USD,

xc1 ;c2
t;0;� = xc1 ;$

t;0;� � xc2 ;$
t;0;� : (7)

We use this de�nition, as opposed to directly constructing the cross-currency basis between

c1 and c2, both because most trades in currency forwards involve a USD leg and to restrict

our sample to US FX trading days on which the U.S. federal funds market is open.19

3.2 Forward Bases

We next de�ne a forward-starting cross-currency basis. Trading a forward starting cross-

currency basis allows an agent to lock-in the price of a cross-currency basis trade that will

start in the future.

We de�ne a forward-starting cross-currency basis using forward interest rates and FX

forwards. Let Rc
t;h;� be the h-month forward-starting annualized� -month gross interest rate

in currencyc at time t, and let R$
t;h;� be the equivalent rate in the USD. The forward-starting

cross-currency basis of foreign currencyc vis-à-vis the USD is

X c;$
t;h;� =

R$
t;h;�

Rc
t;h;�

�
Ft;h + �

Ft;h

� 12
�

� 1; (8)

and the log version isxc;$
t;h;� = ln (1 + X c;$

t;h;� ): Figure 1 illustrates the de�nitions of the spot

and forward cross-currency basis.

Equivalently, we can de�ne the logh-month forward � -month cross currency basis at time

19According to recent BIS FX derivatives statistics, 90% of global FX swaps have the USD on one leg.
Some cross pairs, such as EURJPY and EURCHF, are actively traded. There are only negligible di�erences
between the cross-currency basis calculated directly using the FX swap rates for the cross pairs and the
basis calculated using Equation (7). The triangular arbitrage for the cross-currency basis holds quite well
post-GFC because the arbitrage only involves trading FX derivatives with limited balance sheet implications.
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t in terms of two spot cross-currency bases under the assumption of no-arbitrage between

forward interest rate swaps and the term structure of spot interest rate swaps:

xc;$
t;h;� =

h + �
�

xc;$
t;0;h+ � �

h
�

xc;$
t;0;h : (9)

The equivalence between Equations (8) and (9) is shown in Internet Appendix C. Equation

(9) also shows that there is a close analogy between forward cross-currency bases and forward

interest rates. As in Equation (7), we de�ne the forward cross-currency basis between non-

USD currenciesc1 and c2 as

xc1 ;c2
t;h;� = xc1 ;$

t;h;� � xc2 ;$
t;h;� : (10)

We next consider the typical shape of the term structure of CIP violations � that is,

the shape of the cross-currency basis forward curve. It is possible to construct forward CIP

trades of many di�erent horizonsh and tenors� . However, the most liquid and reliable OIS

tenors are 1M, 2M, 3M, 4M, 6M, 9M, and 12M. In Figure 2, we present the forward curves

of AUD and JPY vis-à-vis the USD for all reliable horizons: spot, 1M, 2M, 3M, 4M, 6M, and

9M. The tenor � of these forward CIP trades di�ers, beginning at one month and increasing

to three months. Internet Appendix Figure A3 presents an alternative version of the forward

curve that uses only three month tenors.

We present these forward basis curves as time series averages for two currencies, AUD

and JPY. These two currencies stand out in the data as having very positive/negative spot

cross-currency bases vis-à-vis the USD during our post-GFC sample period, respectively.

For each currency, we divide our sample into three sub-samples based on the tercile of the

level of the spot 3M tenor basis. We then compute the time-series average of the spot and

forward-starting cross-currency basis within each sub-sample.
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From these forward curves, it is immediately apparent that the forward cross-currency

bases tend to be larger (more positive) than the spot cross-currency basis for AUD, and

smaller (more negative) for JPY. This fact is somewhat analogous to the tendency of the

term-structure of interest rates to be upward sloping. If we think of forward cross-currency

bases as being equal to expectations under a risk-neutral measure (an approach that is valid

in our model despite the presence of arbitrage), then this suggests that the absolute value of

spot cross-currency basis is generally expected to increase under the risk-neutral measure.

This raises the question of whether the spot cross-currency basis is also expected to

increase in absolute value under the physical measure. That is, do the slopes of these

forward curves re�ect expectations, risk premia, or some combination thereof?

3.3 Forward CIP Trading Strategy

The forward CIP trading strategy consists of a forward cross-currency basis trade and a

spot cross-currency basis trade at a later date. At timet, an agent enters into theh-month

forward � -month cross-currency basis trade. Afterh months, at time t+ h, the agent unwinds

the trade by shorting the then-spot� -month cross-currency basis.

Although the forward CIP trading strategy involves two potential arbitrage opportunities,

it is itself risky in that the spot � -month cross currency basis at timet+ h is not guaranteed to

be equal to theh-month forward � -month cross-currency basis at timet. Figure 3 illustrates

the mechanics this trading strategy.

The pro�ts from this trading strategy are primarily a function of the realized cross-

currency basis at timet + h compared to� -month forward cross-currency basis at timet. To

�rst-order, the annualized pro�t per dollar notional (which can be thought of as an excess
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return) is

� c1 ;c2
t+ h;h;� �

�
h

(xc1 ;c2
t;h;� � xc1 ;c2

t+ h;0;� ): (11)

The term �
h plays the role of a duration, converting the di�erence between the forward and

realized basis,xc1 ;c2
t;h;� � xc1 ;c2

t+ h;0;� , into an annualized dollar pro�t per unit notional.20

The key property of the forward CIP trading strategy for our purposes is that it allows

an intermediary to bet on whether the cross-currency basis will be higher or lower than

implied by the forward cross-currency basis. Our model equates the magnitude of the basis

with the degree to which regulatory constraints binds. Consequently, this strategy allows

intermediaries to bet on whether constraints will be tighter or looser in the future.

The forward CIP trading strategy is a valid trading strategy even if the underlying cross-

currency basis is not actually tradable or not a pure arbitrage. For example, individual

arbitrageurs may not have direct access to the OIS �oating leg.21 Nevertheless, the forward

CIP trading strategy is a valid trading strategy that bets on whether the basis as measured

by OIS swaps referencing this rate becomes larger or smaller.

Moreover, the forward CIP trading strategy per se does not materially contribute to

the balance sheet constraints of �nancial intermediaries, especially in comparison with the

spot CIP arbitrage. This is because interest rate forwards and FX derivatives have zero

value at inception. The required initial and variation margins for the derivative positions

are generally a few percent of the total notional of the trade. In contrast, the spot CIP

arbitrage requires actual cash market borrowing and lending, and is therefore balance sheet

intensive.22

20We derive this expression, which is a �rst-order approximation, from a more exact calculation in Internet
Appendix Section D.

21In the United States, the �oating leg of the OIS is the federal funds rate. Only banks with reserve
accounts at the Federal Reserve can trade in the federal funds market.

22For example, a $100 million spot CIP trade requires borrowing $100 million in the cash market and
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4 Forward CIP Trading Strategy's Excess Returns

In this section, we present evidence that the forward CIP trading strategy is pro�table on

average. The excess returns are observed in certain individual currencies against the USD,

in trades between cross-currency pairs, and in portfolios. We �nd that the currency pairs

with the highest excess returns are the currency pairs associated with the �FX carry trade.�

These currency pairs have high interest rate di�erentials, large CIP violations, and unhedged

currency returns that are positively correlated with returns on the S&P 500 index. We also

study a one-day forward CIP arbitrage to examine balance sheet constraints on quarter-end

regulatory reporting dates.

4.1 USD-based Currency Pairs

We begin by discussing results for individual currencies. Panel A of Table 1 reports the

pro�ts per dollar notional on the one-month-forward three-month tenor forward CIP trading

strategy in each of the six sample currencies vis-a-vis the USD. For each forward CIP trading

strategy, we present the annualized mean pro�t per dollar notional and the Sharpe ratio, by

period. Standard errors of the statistics are reported in parentheses.23

Beginning with the pre-GFC period, we observe that for all sample currencies vis-à-vis

lending $100 million in the FX swap market, which expends the size of the total exposure of the bank by
$100 million for the leverage ratio calculation. However, the impact of $100 million interest rate swap on the
leverage ratio is signi�cantly smaller. The total exposure includes initial and variation margins (typically a
couple percent of total notional), and an additional 0-1.5% of the swap notional calculated for o�-balance-
sheet interest rate derivative exposure using the Current Exposure Method, depending on the maturity of
the interest rate swaps (Haynes et al. (2018)).

23Means and Sharpe ratios are calculated using overlapping monthly pro�ts per dollar notional from daily
data and then scaled up by12 and

p
12, respectively. We use Newey-West standard errors and the Newey

and West (1994) bandwidth selection procedure, and use the "delta" method to compute standard errors for
the Sharpe ratios (Lo, 2002). Internet Appendix Table A7 presents for robustness virtually identical results
for portfolios (Table 3 below) using non-overlapping monthly data.
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the USD, the pre-GFC pro�ts are very close zero. Post-GFC, the pro�ts in most currencies

are larger in absolute value. Some currencies such as JPY have marginally statistically

signi�cant Sharpe ratios in the pre-GFC period, but this re�ects small mean pro�ts and

even smaller standard deviations. In contrast, post-GFC, four currencies vis-à-vis USD have

non-trivial mean pro�ts and both statistically and economically signi�cant Sharpe ratios.

Panel B of Table 1 illustrates that the sign of a currency's forward CIP trading pro�ts

(vis-à-vis the USD) is related to a number of other economically important properties of

the currency. AUD, CAD, and GBP have positive forward CIP arbitrage pro�ts, while

EUR, CHF, and JPY have negative forward CIP arbitrage pro�ts. The former group are

high-interest-rate �investing currencies� and the latter group are low-interest-rate �funding

currencies� for the unhedged FX carry trade. In bad times (proxied by low S&P 500 returns),

the �funding currencies� tend to appreciate against the USD, while the �investing currencies�

depreciate. CIP deviations make "funding currencies" more appealing in terms of their

synthetic dollar interest rates. These currencies have substantial negative cross-currency

bases (higher synthetic dollar interest rates), whereas �investing currencies� have less negative

or even positive cross-currency bases vis-à-vis USD.

Moreover, the AUD, CAD, and GBP all have an upward-sloping CIP term structure on

average.24 In contrast, EUR, CHF, and JPY have a downward-sloping CIP term structure

on average. Put another way, the increases in the absolute value of the basis implied by the

forward curves do not actually occur, on average. This result is analogous to the existence

of the term premium in the term structure literature.25

24We de�ne slope as the di�erence between the 1-month forward 3-month basis and the spot 3-month
basis.

25Taking this analogy further, Internet Appendix E provides suggestive evidence that the slope of the
forward curve predicts forward CIP trading pro�ts, just as the slope of the term structure predicts bond
returns (Campbell and Shiller, 1991). However, the statistical signi�cance is sensitive to the inclusion of the
COVID-19 crisis period in the sample.
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As mentioned in Section 2, OIS rates are not directly comparable across currencies. For

example, the CAD OIS rate is collateralized, whereas most other rates are not. As another

example, the CHF OIS rate changed by around 20 bps as part of an overnight benchmark

rate reform in 2017. If we used the new index instead of the old index to compute the spot

basis, the CHF-USD basis would be less negative by about 20 bps.26 In USD, institutional

factors cause the OIS rate (fed funds) to fall below the rate on excess reserves (Bech and Klee

(2011)), whereas the EONIA rate generally exceeds the ECB deposit rate. For these reasons,

we do not view (for example) the sign of the CAD-USD basis or the exact ranking of the bases

in B of Table 1 as particularly meaningful. Instead, we note that the investing currencies

and funding currencies are notably di�erent across all �ve of the dimensions considered in

Panel B of Table 1.

4.2 Currency Pairs with the Largest Bases

Our model suggests that intermediaries will actively trade the bases with the maximal arbi-

trage per unit risk weight. If risk weights are roughly equal across currencies, this suggests

focusing on the currency pairs with the largest bases. As discussed earlier ("Heterogeneity

Across Currencies" in Section 2), for a variety of reasons we do not take a stand on which

currency pair truly has the largest basis but instead present results for the ten currency pairs

with the largest bases. In the context of our model, if intermediaries actively trade all of

these bases, the di�erences in the magnitude of the basis across pairs must be due either to

measurement issues or di�erences in risk weights. In both of these cases, we would expect

positive expected returns and Sharpe ratios from our forward arbitrage strategy for all ten

26As mentioned previously, swaps on the new CHF OIS index are not liquid enough for our purposes,
which is why we present results with the old index.
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bases.27

In Table 2, we present the forward CIP returns associated with the ten currency pairs with

the largest average spot 3-month bases post-GFC.28 The mean returns of these currency pairs

are linear combinations of the mean returns for each currency leg vis-à-vis USD presented

earlier; the Sharpe ratios are not. The mean average pro�ts are positive for all ten pairs

post-GFC, and the annualized Sharpe ratio is above 0.5 for 8 out of 10 currency pairs. The

average interest rate di�erential for each of these ten pairs is positive, once again suggesting

a relationship between carry and the pro�ts of the forward CIP trading strategy.

Consider as an example the �classic carry� currency pair of long AUD, short JPY. This

pair has one of the largest spot bases, and is particularly associated with the carry trade.29

The AUD-JPY forward CIP trading strategy earns an a post-GFC average pro�t equal to

16 basis points and its annualized Sharpe ratio is 1.18. Both results are highly statistically

signi�cant, and the magnitude of the Sharpe ratio is high compared to many documented

trading strategy returns in the literature. For comparison, the traditional un-hedged FX

carry trade has an annualized Sharpe ratio of 0.48 for developed market currencies from

1987 to 2009, and the annualized Sharpe ratio of a value-weighted portfolio of all U.S. stocks

from 1976 to 2010 is 0.42 (Burnside et al. (2010), Burnside et al. (2011)). Note, however,

that our analysis is limited to the post-GFC period, which is a short sample. During this

period, the developed market carry trade and U.S. stock portfolio had annualized Sharpe

ratios (0.18 and 1.05, respectively) that are not representative of the longer sample.30

27If each of the ten forward arbitrage strategies were an exact (noiseless) bet on the size of the shadow
cost � RC

t +1 , scaled by the risk weight k i , they would all have positive expected returns and the same Sharpe
ratios. In the presence of currency-speci�c noise, the Sharpe ratio will be attenuated for each currency pair
based on the magnitude of the noise.

28These ten pairs also all have a positive spot 3M basis on virtually every day in our sample.
29AUD-CHF has a slightly larger average spot basis than AUD-JPY. However, as mentioned previously,

there are signi�cant problems with the CHF OIS index and our CHF sample ends in 2017.
30That said, the correlation of the AUD-JPY forward CIP return to the U.S. market is not very high
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The connection between interest rate di�erentials and the spot cross-currency basis was

documented in Du et al. (2018b). As discussed in the survey of Du and Schreger (2021), CIP

deviations are induced by the interaction between steady demand for funding and hedging

services and intermediary constraints. The funding and hedging demand for high-interest-

rate currencies is particularly strong from low-interest-rate countries, as the search-for-yield

investors demand assets denominated in high-interest-rate currencies. One implication of

that story, through the lens of our model, is that the risk that the classic carry basis becomes

larger is priced because it correlates with intermediary constraints more broadly. Consistent

with this, our results show that there is a relationship between the spot basis, interest rate

di�erentials, and forward CIP trading pro�ts.

4.3 Portfolios of Forward CIP Trading Strategies

In addition to the �classic carry� AUD-JPY currency pair, we examine �ve portfolios of

forward CIP trading pro�ts: �dollar-neutral carry�, �dynamic top-�ve basis�, �static top-

six basis�, �top-six �rst PC�, and �dollar�. The �rst four of these are based on interest

rate di�erentials and the size of the spot cross-currency basis; they generate positive mean

returns and high Sharpe ratios post-GFC. In contrast, the return for the dollar portfolio

is insigni�cant. As mentioned previously, all of these portfolios exclude CHF due to data

limitations.

The portfolios are de�ned as follows. The �dollar-neutral carry� portfolio is a dollar-

neutral carry strategy. The portfolio goes long in the forward CIP trading strategy for the

AUD, CAD, and GBP vis-à-vis the USD, each with 1/3 weight, and short in the forward

CIP trading strategy for the EUR and JPY vis-à-vis the USD, each with 1/2 weight. The

(about 0.3 monthly post-GFC), so there is no particular reason to think that whatever forces caused the
market to have high returns post-GFC also in�uenced the forward CIP return.
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�dynamic top-�ve basis� portfolio equally weights the forward CIP trading strategies for

the largest �ve spot cross-currency basis pairs and is re-balanced monthly. The �static top-

six basis� portfolio equally weights the forward CIP trading strategies in the six non-CHF

currency pairs listed in Table 2, which were selected based on the average spot 3-month

cross-currency basis in the post-GFC sample. The �top-six �rst PC� portfolio is the �rst

principal component of those same six pairs. The sign and scale of the �rst PC (which are

arbitrary) are chosen to match the volatility of the AUD-JPY currency pair and to ensure

a positive correlation between the �rst PC and AUD-JPY.31 The �dollar� portfolio places

equal weights on each of the individual non-CHF sample currencies vis-à-vis the USD. All of

these portfolios, with the exception of the dollar portfolio, are have highly correlated returns

(the lowest pairwise correlation is 0.93 in our non-overlapping monthly sample).

We report the annualized mean pro�t and the Sharpe ratio for these �ve portfolios,

together with the performance for the �classic carry� strategy in Table 3. The pre-GFC mean

pro�ts of these portfolios are all close to zero. The post-GFC mean pro�ts are signi�cantly

positive at about 11 to 16 basis points for all of the portfolios except the �dollar� portfolio,

with signi�cant annualized Sharpe ratios between 1 and 1.3. In contrast, the post-GFC

pro�ts and the Sharpe ratio for the �dollar� portfolio remain close to zero. In robustness

checks, we show similar patterns hold for one-month tenors, three-month horizons, and for

strategies based on IBOR bases (Internet Appendix Tables A3, A4, A5, and A6).32

31The weights are roughly AUD-JPY 0.26, AUD-EUR 0.16, USD-JPY 0.27, CAD-JPY 0.22, USD-EUR
0.17, GBP-JPY 0.18. The sum of the weights exceeds one because AUD-JPY is more volatile than most
other currency pairs; matching the volatility of AUD-JPY facilitates a comparison between results with the
PC1 and results with AUD-JPY. We have constructed versions that use weights based on the �rst principal
component of the spot bases, as opposed to of the forward CIP returns, as well as versions that use all
pairwise combinations of forward CIP returns, and not just the six listed in Table 2. The resulting portfolios
have virtually identical returns. The "dynamic top-�ve" portfolio is tradable as it is formed based on ex-ante
available interest rate information, whereas the �static top-six basis� and �top-six �rst PC� are constructed
using the full sample. The choice of �ve vs. six pairs is arbitrary and has minimal impact on the results.

32Our IBOR data has missing data in CAD but not CHF; as a result, our IBOR portfolios di�er from
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4.4 Quarter-Ends

Quarter-ends o�er an interesting window to examine forward CIP deviations and the pro�ts

of our forward trading strategy. As documented in Du et al. (2018b), there are large spikes in

short-term CIP deviations for contracts that cross the quarter-ends. Those authors attribute

the quarter-end spikes to the fact that the Basel III leverage ratio is calculated using quarter-

end snapshots of bank balance sheets in many non-U.S. jurisdictions, tightening leverage

constraints for intermediaries on quarter-ends. We show that there is additional premium in

our forward trading strategy associated with the quarter-end turn. To the extent that the

quarter-end e�ect in the spot CIP deviation o�ers clean evidence on the e�ects of leverage

constraints, our �nding of a positive risk premium associated with the quarter-end turn o�ers

additional support for the idea that leverage constraints are priced.

We have thus far side-stepped the issue of quarter-ends in our analysis by studying

forward CIP trading strategies with a three-month tenor, ensuring that the contracts in

question always cross quarter-end. In this subsection, we instead study a forward CIP

trading strategy that uses tenors of a single business day and focus on quarter-end e�ects.

One advantage of examining one-day forward trading strategy is that we have many more

non-overlapping daily observations to calculate the mean returns over the post-GFC sample.

We follow Correa et al. (2020) and construct overnight (ON) and tomorrow/next (TN)

CIP deviations. These are constructed from central bank deposit rates as opposed to OIS

rates. The ON CIP deviation is a one day spot CIP violation; the TN CIP deviation is a

one-day-forward-starting one-day CIP violation. From these, we can construct a one-day

forward CIP trading strategy by betting on whether the TN CIP deviation traded at time t

is larger than the subsequent realized spot ON CIP deviation traded att + 1. We provide

our OIS portfolios because they include CHF but not CAD.
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details on ON and TN basis calculations in Internet Appendix F.

In Table 5, we regress the annualized ON CIP deviation, one-day lagged TN CIP devia-

tion, and the pro�t on the one-day forward CIP trade on a constant and quarter-end dummy,

pooled across the funding currencies (CHF, EUR and JPY) vis-à-vis the USD.33 Column 1

shows that the ON basis averages to 11 basis points and jumps by 154 basis points on average

when crossing quarter-ends. Column 2 shows that the TN basis averages to 15 basis points

and jumps by 207 basis points on average one (business) day before the quarter-ends. The

large jump in the TN basis right before quarter-ends suggests that the quarter-end e�ects

are anticipated and in part priced into forward CIP deviations. Since the average TN basis

is higher than the average ON basis and the quarter-end jump in the TN premium is on

average larger than ON premium, there is a positive average pro�t for our one-day forward

CIP trading strategy and an additional positive risk premium crossing the quarter-ends. In

Column 3, we can see that the average pro�t on the ON-TN forward CIP trading strategy

outside is about 4 basis points, and about 53 basis points higher on quarter-ends.

In Internet Appendix Figure A4, we show the shape of the forward curve of the 1M-tenor

AUD-JPY basis with three sub-samples based on whether the next quarter-end is within the

next month, between one and two months in the future, or more than two months in the

future. We observe that all three lines exhibit a spike, precisely when the interest tenor in

the basis crosses the quarter end. This further illustrates that intermediary's quarter-end

constraints are anticipated and priced. However, we cannot detect additional risk premium

for the 1M-tenor forward associated with quarter-end crossings in Internet Appendix Table

A12, likely due to limited power when using the longer-tenor contracts in detecting the risk

33Because of our limited sample of quarter-ends, pooling across currencies is necessary to precisely estimate
quarter-end e�ects. We focus on the funding currencies vis-à-vis the USD because of data availability and
the relationship between forward CIP returns and the carry trade documented thus far. Using central bank
deposit rates allows us to include CHF.
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premium associated with quarter-ends.

4.5 Additional Sub-sample Analysis and Transaction Costs

COVID-19. Our sub-sample analysis in Table 4 presents results with and without the

market turmoil induced by the COVID-19 pandemic. The average returns of our portfolios

are similar in the two sub-samples.

In March 2020, spot CIP bases widened to levels seen in previous crises in almost all

currencies, and this spike was not anticipated by the forwards. However, in April 2020 the

spot bases converged back to roughly the levels observed in February 2020, and this normal-

ization was also not fully anticipated by the forwards.34 As a result of these movements, the

1M-forward 3M AUD-JPY forward CIP trading strategy experienced large negative pro�ts

on trades starting in the middle of February 2020, but large positive pro�ts on trades start-

ing in March and April. In total, the trading strategy earned roughly average pro�ts during

2020 relative to previous years, despite the COVID-19 crisis. A similar pattern appears for

other portfolios: the large losses incurred on trades initiated in February 2020 were o�set

by large gains over the next few months, and the overall returns for 2020 are similar to the

average of prior years. The Sharpe ratios for the sample including 2020 are slightly lower

than the sample ending in 2019 due to the higher volatility of returns in 2020.

We interpret these results in the following way. First, consistent with the idea that CIP

violations measure the tightness of constraints, our strategy experiences negative pro�ts at

the beginning of periods of �nancial stress. Second, during periods of �nancial stress, the

34For example, on March 19th, 2020 the OIS-based AUD-JPY 3M spot basis peaked at 222bps, and on
that day the 1M-forward 3M basis was 107bps. Thus, in contrast to the usual upward-sloping pattern, at
the peak of the crisis the forwards anticipated a substantial decline in the spot basis. The realized decline,
however, was even larger than anticipated; by April 21st, 2020, the spot basis was back to 56bps and the
1M-forward basis was 61bps (returning to the usual upward-sloping pattern). The spot basis continued to
shrink through the beginning of May, reaching roughly 30bps.
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risk premia earned by our strategy are particularly large, which is to say that the risk that

constraints tighten further carries a large price during these episodes. As a result, sample

periods that include both the onset and resolution of �nancial stress have an ambiguous e�ect

on the average returns of our strategy. This phenomenon is not speci�c to the COVID-19

crisis; for example, the 1M-forward 3M AUD-JPY forward CIP trading strategy experienced

very negative pro�ts for trades starting on August 14th, 2008 (one month prior to the collapse

of Lehman Brothers), but very large positive pro�ts starting September 18th, 2008 (almost

immediately after the collapse of Lehman Brothers).

Basel III. Our post-GFC sample begins in 2010, which marks the beginning of the lengthy

process for the introduction and implementation of Basel III banking regulations. These reg-

ulations substantially a�ected banks ability to engage in balance-sheet intensive activities.35

Notably, the public disclosure of the Basel III leverage ratio starts on January 1, 2015. Given

that the leverage ratio requirement under Basel III is the most relevant regulatory constraint

for CIP arbitrage, we split the post-GFC period into pre- and post-2015. Internet Appendix

Table A8 shows that our main results are robust in both sub-samples post-GFC, with mean

returns that are perhaps slightly larger in the post-2015 sub-sample. The Sharpe ratios in

the post-2015 sample are smaller due to the e�ects of the COVID-19 crisis discussed above.

Transactions Costs. We have limited data on the transactions costs associated with

implementing the forward CIP trading strategy. Large intermediaries are likely to implement

the strategy at low cost (either collecting the bid-o�er when trading with clients or trading at

35Besides CIP deviations, higher balance sheet costs are also manifested in the repo market. In Internet
Appendix Figure A5, we show that the average gross repo position of primary dealers declined by more
than 40% in the post-GFC sample compared to their pre-GFC peak, which is consistent with more binding
non-risk-weighted leverage constraints. The spread between large banks' lending rate and borrowing rate in
repo markets also widened signi�cantly post-GFC.
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close to the mid-price in inter-dealer transactions). Anecdotal evidence suggests that some

large hedge funds use interest rate and FX derivatives to arbitrage the term structure of CIP

violations, suggesting that the transaction costs are not prohibitively large.

We study these forward CIP trading strategies because they reveal interesting information

about currencies and intermediaries, and not because we advocate them as an investment

strategy. It may well be the case that a typical trader in a small hedge fund paying the

bid-o�er on the various instruments used to implement the trading strategy would not �nd

it pro�table. We provide a conservative estimate of transaction costs by assuming the full

quoted bid-o�er spreads from Bloomberg are paid on every single instrument involved in the

trading strategy. Note this approach likely substantially overstates total transaction costs

as our trade can be easily structured as an asset package. Taking the USD-JPY OIS trade

as an example, the annualized transaction costs based on full Bloomberg bid-o�er spreads

are almost three times the size of the annualized pro�t for the one-month horizon forward

trade and roughly equal to the pro�t for the three-month horizon forward trade (Internet

Appendix Table A13).

5 Implications for the Price of Risk

In the preceding section, we found that there is a substantial risk premium associated with

the risk that AUD-JPY and other bases become larger. We interpret this, through the lens

of our model, as implying that this basis is a measure of intermediary constraints and that

the risk that intermediary constraints tighten is a priced risk factor.

This interpretation has several implications that we explore in this section. First, it sug-

gests that the level of the spot CIP basis should be correlated with other arbitrages a�ected

by constraints on intermediaries. Second, it suggests that the basis should be correlated
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with measure of intermediary wealth and other measures of intermediary constraints. Third,

it implies (assuming an intertemporal hedging motive) that the forward CIP risk premium

should exist even after controlling for intermediary wealth, and that the forward CIP return

should be included along with intermediary wealth in the SDF. Fourth, the forward CIP

risk premium should be consistent with the prices of risk extracted from other assets that

intermediaries trade. We explore each of these implications in turn.

5.1 CIP vs. Other Arbitrages

We interpret the AUD-JPY basis and other CIP deviations as measures of intermediary

constraints. However, our model implies that intermediary constraints, if present, should

a�ect many no-arbitrage relationships and not just CIP. To verify that the bases we study

are indeed measures of intermediary constraints, we begin by con�rming that they co-move

with other documented near-arbitrages. Speci�cally, we show that the AUD-JPY cross-

currency basis co-moves with the �rst principal component of other near-arbitrages from

outside the FX market.

We consider seven types of near-arbitrages: the bond-CDS basis, the CDS-CDX basis,

the USD Libor tenor basis, 30-year swap spreads, the Refco-Treasury spread, the KfW-

Bund spread, and the asset-swapped TIPS/Treasury spread. These near-arbitrages have

been examined in recent literature, such as Bai and Collin-Dufresne (2019); Boyarchenko

et al. (2018); Fleckenstein et al. (2014); Jermann (2019); Longsta� (2002); Schwarz (2018).

We describe these near-arbitrages in more detail in Internet Appendix G.

Each of these near-arbitrages is subject to measurement errors and idiosyncratic sup-

ply and demand shocks. We use a principal component analysis to extract the common

component. Our model implies that variation in the balance sheet capacity of �nancial
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intermediaries should a�ect all these near-arbitrages, and we therefore view this common

component as an alternative measure of intermediary constraints.

We show in Figure 4 that our benchmark AUD-JPY cross-currency basis and the �rst

principal component (PC) of the other near-arbitrages follow broadly similar trends. We

�nd that the �rst PC explains 51% of total variation in the level of the seven near-arbitrages

between January 2005 and December 2020, and has a 41% correlation with the level of the

AUD-JPY cross-currency basis post-GFC.36

However, CIP deviations have several advantages over these other near-arbitrages. First,

they are close to true arbitrages, unlike some of these other measures. For example, the

Libor tenor basis and Treasury swap spread may re�ect credit risk rather than intermediary

constraints, while the bond-CDS basis has a cheapest-to-deliver option and other compli-

cations. Second, they are precisely measured, exhibiting less high frequency volatility than

most of these other measures. Third, and most importantly for our empirical strategy, they

have a rich term structure that allows us to construct our forward CIP trading strategy.

For these reasons, we use CIP violations as our as our preferred measure of intermediary

constraints.

5.2 CIP vs. Existing Measures of Intermediary Constraints

If the cross-currency basis measures intermediary constraints, then the general equilibrium

models of He and Krishnamurthy (2011) and Kondor and Vayanos (2019) imply that it should

co-move with intermediary net worth. However, demand and regulatory shocks should also

a�ect the tightness of intermediary constraints, so we do not expect a perfect correlation.

Similarly, Adrian et al. (2014) argue for broker-dealer leverage as an alternative measure of

36All seven near-arbitrages are long-term (�ve years or above), while the cross-currency basis we use has
a three-month tenor, so the correlation between the two series should not be perfect.
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intermediary constraints. Of course, if broker dealers are subject to leverage constraints,

the tightness of those constraints might change without leverage changing (for example, in

response to changing investment opportunities). Again, for this reason, we do not expect

a perfect correlation between our measure of the tightness of intermediary constraints and

broker-dealer leverage.

We explore the relationship between existing intermediary constraint measures and the

AUD-JPY cross-currency basis in Figure 5. We use as our primary measure of intermediary

wealth the intermediary equity value of He et al. (2017) (henceforth HKM), which is the

cumulative return of value-weighted equity of primary dealers. We also consider, following

He et al. (2017), the equity capitalization ratio of the dealers (HKM Capital Ratio) and the

broker-dealer leverage ratio used in Adrian et al. (2014) (de�ned as broker dealer book asset

over book equity).

In Figure 5, we present a time series of the spot 3M AUD-JPY basis and these in-

termediary wealth and constraint measures. The cross-currency basis and the proxies for

intermediary wealth measures appear to be (negatively) correlated. This suggests that vari-

ations in the spot basis are in part driven by shocks to intermediary wealth. However, in

recent years, we observe an upward trend in the basis, likely attributable to changes in

regulation (e.g. the implementation of Basel III). During this period, intermediary wealth

also increases. As discussed earlier, we expect the basis to capture regulatory and demand

shocks in addition to changes to intermediary wealth. The widening of the CIP deviations

post-GFC lines up with a decline in the broker-dealer leverage, consistent with the idea that

both variables capture intermediary constraints.
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5.3 The Basis and the SDF

Can the correlation between CIP violations and intermediary equity returns explain the risk

premia we documented in the previous section? If the intermediary's SDF consisted only of

the intermediary wealth return, then regressions of excess asset returns on proxies for this

factor should generate intercepts of zero (Cochrane (2009)). In the analysis that follows,

instead of focusing on one particular forward CIP trading strategy, we focus on the �rst

principal component portfolio ("Top-Six First PC") described in the previous section.37

Table 6 reports these regressions for four con�gurations (columns (2) through (5)) of

intermediary wealth return proxies: Market only, Intermediary Equity only, Market and

Intermediary Equity, and Market and HKM Factor. Here, Market and Intermediary Equity

refer to the return on the stock market and the value-weighted equity of primary dealers,

respectively, and HKM Factor refers to innovations to the AR(1) process of primary dealers'

equity capital ratio, as de�ned in He et al. (2017). The outcome variable is the pro�ts of

the 1M-forward 3M-tenor �Top-Six First PC� forward CIP trading strategy, scaled by 1/3 to

convert the units from annualized pro�ts per dollar notional to bps per month (see Equation

(11)).

All four con�gurations generate statistically signi�cant intercepts (� � �), rejecting the

null that the HKM wealth-portfolio factors are su�cient to explain the risk premia on the

forward CIP trading strategy. Moreover, the point estimates for the intercepts range from

3.6 to 4.5 bps per month when using non-overlapping monthly data, which is close to the

average excess return of 5.0 bps/month (see column (1)). That is, proxies for intermediary

wealth returns explain only a small part of the excess returns associated with the forward

37Prior versions of this paper instead focused on AUD-JPY and obtained qualitatively similar results: the
two portfolios are 97% correlated in the post-GFC period.

38



CIP trading strategy. Column (7) presents a quarterly regression that uses the Market and

AEM broker-dealer leverage factor as proxies for intermediary wealth and constraints. We

again �nd that the forward CIP return's exposure to the Market and AEM factor does not

explain the bulk of its excess returns; however, with only 42 quarterly data points, this result

is substantially noisier.

These results suggests that SDFs which include both intermediary wealth returns and

forward CIP returns (as in Equation (1)) should �t the data better than SDFs that use

only intermediary wealth. The Bayesian approach of Chib et al. (2020) (which corrects the

approach of Barillas and Shanken (2018)) provides a method of comparing SDFs to formalize

this intuition. We consider three sets of possible SDFs: (1) combinations of the market,

intermediary equity return, and forward CIP return, (2) combinations of the market, HKM

factor, and forward CIP return, and (3) combinations of the AEM leverage factor, market,

and forward CIP return. The second and third sets of SDFs always include the non-tradable

HKM and AEM factors in the SDF. In Panel B of Table 6, for each of these groups of SDFs,

we calculate the posterior probabilities (given our data and the prior over models described

by Chib et al. (2020)) for each SDF. The total posterior probabilities of models that do

and do not include the forward CIP return are presented in the rightmost column. In the

monthly data speci�cations, the models that include the forward CIP return have a total

posterior probability that is substantially higher than models that do not include the forward

CIP return. That is, the Chib et al. (2020) procedure recommends including the forward

CIP return as a factor in the SDF. The quarterly data sample is insu�cient to distinguish

between models that do and do not include the forward CIP return.

We would caution readers, however, that the exact level of the posterior probabilities

can be sensitive to changes in the sample period or variables in question. The probabilities
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associated with models featuring a forward CIP return are substantially higher when that

forward CIP return is the AUD-JPY return as opposed to the �Top-Six First PC� portfolio,

despite the high correlation between those two returns (see Internet Appendix Table A9).

This di�erence is driven by the small di�erences in the mean return and in the correlation

between those two returns and the Market portfolio. Likewise, the procedure's preference

for models with the market return as opposed to the intermediary equity return is driven

the high return on the market, but not intermediary equity, in the post-GFC period; the two

have similar average returns over longer samples.

If the forward CIP return is part of the SDF, its mean return can help identify the

coe�cients of the SDF. By construction, the returns of our forward CIP trading strategy are

also the (negative of) innovations to the magnitude of the cross-currency basis. Our �Top-Six

First PC� forward CIP trading strategy earns 4.6 bps per month on average in the post-

GFC period.38 Take the Intermediary Equity return as the tradable proxy for intermediary

wealth returns; the mean excess return of Intermediary Equity from 1970 to 2018 is 59 bps

per month. De�ning � as the vector containing these mean excess returns, we can extract

estimates of 
 and � (the coe�cients in the SDF of Equation (1)) by multiplying these

means by the inverse of the variance-covariance matrix (� ) of the two factors (see Cochrane

(2009)). We estimate the standard deviation of the �Top-Six First PC� forward CIP return at

14 bps per month, and the standard deviation of the Intermediary Equity return at 6.3% per

month. The correlation between these two factors is 0.31 in our post-GFC sample, meaning

that the bases with the largest magnitudes tend to shrink when intermediary equity returns

38This is the average of the daily sample of overlapping monthly returns. The non-overlapping monthly
return sample has an average of 5.0 bps per month, as shown in column (1) of Table 6.
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are positive. Using these estimates, with GMM standard errors in parentheses,
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Our results are consistent with
 < 1 in two ways. First, our direct estimate of the


parameter is less than one, and in fact essentially zero. Second, the sign of our estimate of�

is greater than zero, which should be expected if
 < 1. The basic fact driving this result is

that that exposure to the forward CIP return appears to explain essentially all of the excess

returns on intermediary equity. As a result, our point estimates are consistent with the

model that motivates Adrian et al. (2014), with risk-neutral but constrained intermediaries.

However, these are point estimates and subject to estimation error; our estimate for� is

statistically signi�cant at the 1% level, but we cannot reject
 coe�cients that exceed one.

See Internet Appendix H for a discussion of the estimation and standard errors.

Our estimate of � > 0 (implying 
 < 1) is driven by the fact that the forward CIP

strategy achieves a risk premium that is larger than would be expected given its beta to

the intermediary equity factor. Recall that a large basis indicates better future investment

opportunities. Intermediaries will view exposure to basis shocks as risky if they prefer to

hoard wealth to take advantage of those better investment opportunities, which occurs when


 < 1. We emphasize that this is not a quirk of our model, but rather a general fact about

investment opportunities and intertemporal hedging.39

However, we cannot rule out the alternative possibility that the forward CIP return is

a better proxy for the true intermediary wealth return. If the risk premia we document is

caused entirely by this e�ect and not inter-temporal hedging, the forward CIP return must

39See, for example, pg. 1157 of Kondor and Vayanos (2019).
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be a much better proxy for the true intermediary wealth return than the HKM intermediary

equity measure. Suppose that
 = 1, so there is no intertemporal hedging concern. Our

Sharpe ratio estimate for the �Top-Six First PC� forward CIP trading strategy implies (by the

Hansen-Jagannathan bound) that the true intermediary wealth return must have an annual

volatility of at least 100%, far higher than the annualized volatility of the Intermediary

Equity return. Suppose instead that
 > 1. In this case, the intermediary manager should

view the forward CIP trading strategy as not being very risky at all, because it o�ers low

returns only when there are future arbitrage opportunities. To overcome this intertemporal

hedging e�ect, we would have to suppose that our forward CIP trading returns are strongly

correlated with the true intermediary wealth returns.40

We believe our results are interesting regardless of which of these interpretations is pre-

ferred. Either intertemporal hedging considerations are large and can be proxied for by the

forward CIP return, or the forward CIP return is a better way of measuring intermediary

wealth returns (the main component of the SDF). Under either of these interpretations, we

would be justi�ed in using the forward CIP return as an asset pricing factor.

5.4 Cross-sectional Asset Pricing

We next present a cross-sectional analysis, which provides an additional test of our theory.

If the SDF in Equation (1) is correctly speci�ed and the traded factors are good proxies of

the true factors, the prices of risk estimated from the cross-section of asset returns should

be the same as the unconditional risk premia of the traded factors.

We view this analysis as a complement to our earlier direct estimates of the forward

40Given the persistence of the cross-currency basis, which causes the intertemporal term to be large, it is
not obvious that even perfect correlation with the intermediary wealth return solves the problem. However,
without an exact quanti�cation of the intertemporal terms, we cannot rule out this possibility.

42



arbitrage return. The key advantage our approach enjoys over other empirical intermediary

asset pricing exercises is that we are able to directly estimate the price of the risk that

constraints tighten. The cross-sectional exercise allows us to verify that the price of risk we

directly estimate is consistent with the price of risk we infer from the cross-section. Because

we are focused on the post-GFC sample, the power of our cross-sectional exercise is limited.

Despite this limitation, we are in some cases (when pooling across asset classes) able to

reject the hypothesis of a zero risk price but not the hypothesis that the risk price in the

cross-section matches the risk price we directly estimate.

Our exercise builds directly on HKM. We study equities (FF6, the Fama-French 6 size

by value portfolios, Fama and French (1993)), currencies (FX, developed and EM currencies

sorted on forward premia, Lustig et al. (2011)), US bonds (US, six maturity-sorted CRSP

"Fama Bond Portfolios" of Treasury bonds and �ve Bloomberg corporate bond indices),

sovereign bonds (Sov, sorted on credit rating and beta to the market, Borri and Verdelhan

(2015)), equity options (Opt, twelve portfolios of S&P 500 calls and puts, Constantinides

et al. (2013)), credit default swap indices (CDS, �ve traded CDS indices), and commodities

(Comm, six Bloomberg commodity futures return indices). We also study single-currency

forward CIP returns with OIS and IBOR rates (FwdCIP).

Note that many of these test portfolios have a factor structure to their returns. For

example, the currency portfolios of Lustig et al. (2011) can be summarized by the �carry�

and �dollar� factors. Following HKM, we do not include these factors as additional factors

in our model. That is, we are asking whether the risk premium associated with the carry

trade is explained by its exposure to intermediary wealth and the forward CIP return, not

whether the proposed factors of the SDF predict the part of currency returns that is not

explained by the carry and dollar factors.
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The conjecture we are testing, which follows from our hypothesized form of the stochastic

discount factor,41 is that

E[Ri
t+1 � Rf

t ] = � + � i
w � w + � i

x � x ; (12)

where � i
w is the beta of asseti to the intermediary wealth return and � i

x is the beta to the

negative of the forward CIP return. These betas can be estimated in the standard way using

a time series regression,

Ri
t+1 � Rf

t = � i + � i
w(Rw

t+1 � Rf
t ) + � i

x r jx j
t+1 + � i

t+1 ; (13)

wherer jx j
t+1 is the negative of the return of the �Top-Six First PC� of forward CIP returns.42

Our preferred speci�cation uses the Intermediary Equity return as our proxy forRw
t+1 . As

discussed in Cochrane (2009), with tradable factors, if we included the factors as test assets

and used GLS or two-step GMM to estimate the risk prices� x and � w , we would recover

the mean excess returns of those factors. We ask instead whether the price of risk implied

by the cross-section of other asset returns is consistent with the mean excess returns on our

tradable factors. For this reason, we estimate Equation (12) as an OLS regression, with

GMM standard errors to account for the estimation of the betas in Equation (13), following

chapter 12 of Cochrane (2009).43 Both regressions use monthly data. For each asset class,

41Our hypothesis is expressed as a linear form for the log SDF, but we test a linear SDF to stay closer to
the procedure of He et al. (2017).

42Our model implies that the risk-free rate in this time-series regression is misspeci�ed, and should include
an adjustment proportional to x t (see Internet Appendix Equation (A2)). However, becausex t has only a
little ability to predict Rw

t +1 � Rf
t or r j x j

t +1 , omitting it has almost no e�ect our results. See Internet Appendix
Table A22 for a version of Table 8 with a risk-free rate adjustment.

43More e�cient (in an asymptotic sense) procedures estimate equations (12) and (13) jointly as moment
conditions. These procedures have advantages and disadvantages relative to the cross-sectional approach;
see Cochrane (2009).
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and for a combination of all eight asset classes, we report the "H1 p-value" from testing

whether � w and � x are equal to the mean excess return of the corresponding factor (59 bps

per month and -5.0 bps per month in our non-overlapping monthly sample, respectively).

This p-value, as opposed to the usual test of whether the coe�cients are zero, is the focus

of our analysis.

One di�erence between our main speci�cation and the textbook procedure is that the

samples we use to estimate the betas and the mean excess returns are di�erent. Our model

argues that the cross-currency basis enters the SDF because it measures the degree to which

regulatory constraints bind, a viewpoint relevant for the post-GFC period. Ten years of

data, however, is generally too short to reliably determine whether one test portfolio has a

higher expected return than another test portfolio. To overcome this di�culty, we estimate

the cross-sectional regression using the longest available sample for each test portfolio, while

estimating the betas using only the post-GFC sample. This approach increases the likelihood

of rejecting our "H1" hypothesis (biasing against our main �nding), and is valid if the long-

sample expected excess returns are also the expected excess returns in the post-crises period.

We present broadly similar results using only post-GFC data in the Internet Appendix Table

A28.44

There is the potential for weak identi�cation in our setting. Weak identi�cation arises

when there is not signi�cant cross-sectional variation in the betas of the test assets to the

factors. Kleibergen and Zhan (2020) develop a "pre-test" that tests whether the estimated

44 One di�erence between our main results and our results using post-GFC means is the risk price of the
basis shock with FX test assets. We �nd that carry trade returns are correlated with the basis shock, but in
the post-GFC period, carry trade returns are smaller than in the pre-GFC period. This example illustrates
the costs and bene�ts of using the full sample for mean returns. If we believe carry still earns a large risk
premium, but happens to have not done as well during the post-GFC period, using the long sample provides
a better estimate of the price of risk for the basis shock. If instead we believe that the risk premium of carry
has declined, then using only the post-GFC sample is preferable.
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betas of the test assets are di�erent from each other. We report the p-value associated with

this test. Low p-values suggest rejection of the hypothesis that the betas are equal.45 Note

that the primary focus of our exercise is whether we can reject our "H1" hypothesis. Spurious

rejection induced by weak identi�cation makes it harder for us to �nd cross-sectional results

that are consistent with our direct estimates of the risk premia for our tradable factors.

Note that our estimates depart in a variety of ways from HKM. Our results are estimated

on monthly data, and our betas are estimated only in the post-GFC period. Our test

portfolios in each asset class are also di�erent, in some cases only slightly and in some cases

more substantially. We describe these details in the Internet Appendix, Section K.

Our main cross-sectional results are shown in Table 8. These results use the two-factor

speci�cation of Equation (12), with the Intermediary Equity return as the empirical proxy

for Rw
t+1 . The �rst eight columns show results for individual asset classes. For several asset

classes, we cannot reject the hypothesis of weak identi�cation, and the problem is particularly

severe for commodities. Pooling our eight asset classes improves identi�cation, and we report

pooled results in column (9).

Our main outcome of interest is the H1 hypothesis that the prices of risk are equal to the

mean excess returns of Intermediary Equity and negative of the forward CIP return. We are

unable to reject this hypothesis when we pool across asset classes to achieve more precise

identi�cation. Our point estimates in the pooled speci�cation (� w = 0:472; � x = � 0:0485)

are in fact quite close to the mean excess returns. Note also that our point estimates for

the price of the basis risk,� x , are strikingly consistent across the asset classes (except for

45Speci�cally, we use the multi-factor version of the test described in the appendix of Kleibergen and
Zhan (2020). We report the F test associated with their statistic to account for the "large N , small T"
nature of some of our regressions. We modify their test slightly to account for the fact that when we pool
asset classes, we have one intercept for each asset class in the asset-pricing equation as opposed to a single
intercept. Unfortunately, the other robust inference methods described by Bryzgalova (2020) and Kleibergen
and Zhan (2020) could not be directly applied to our setting.

46



equities, which has large standard error).

The H1 hypothesis is rejected at conventional thresholds in the US bond and FX asset

classes due to (respectively) very low and very high estimates for the risk price� w . With

regards to the FX asset class, three points are worth mentioning. First, the KZ p-value is

high, indicating that there may be an insu�cient spread in the betas of the interest-rate

sorted portfolios to the intermediary asset pricing factors to identify the relevant prices of

risk, in which case the standard errors on our estimates might be misleading. Second, some

authors (e.g. Burnside et al. (2011)) have argued that the factors that price the carry trade

are disconnected from the factors that price other assets; consistent with this, our point

estimates can be interpreted as saying that the carry factor is correlated with intermediary

equity returns but carries a higher risk price than can be justi�ed by that correlation. Third,

as noted in footnote 44, the carry trade has performed less well in recent years; our results

that use only the post-GFC sample to estimate mean returns (Internet Appendix Table

A28) estimate prices of risk for the FX asset class that are close to our directly-estimated

risk prices.

With regards to US bonds, the negative price of risk estimated for� w appears only

when including the March 2020 COVID crisis. As noted by, for example, He et al. (2021),

during this episode longer-dated Treasury bonds initially fell in price, in contrast to the

price increases observed during prior crisis episodes. Moreover, these movements were large

relative to the usual degree of volatility in Treasury yields during the post-GFC period. As

a result, the inclusion of March 2020 in the sample has a large impact on our estimates of

the beta between Treasury bonds and our risk factors; of course, it also a�ects the betas

estimated for other, more volatile assets, but to a smaller degree. Internet Appendix Table

A14 presents results for a data sample that ends in December 2019. The pooled results
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are similar to those obtained using the full data sample, but for some asset classes, and in

particular for US bonds, the point estimates di�er substantially.

We consider a variety of alternative speci�cations in the Internet Appendix. The �nding

of a low (negative) intermediary risk price for US bonds and an excessively large intermediary

risk price for currencies appear in almost all of these speci�cations, including speci�cations

that replicate the HKM analysis and do not include our basis factor.

Our model emphasizes that the SDF should include proxies for both intermediary wealth

returns and future investment opportunities. For this reason, we view our forward CIP

return factor as complement to the HKM intermediary equity return measure. However,

as discussed above, we cannot rule out the possibility that our measure is instead a better

proxy for intermediary wealth returns. Internet Appendix Tables A15, A16, A17, and A18 all

run two-factor models involving the Market and an intermediary-related factor (the HKM

factor, the HKM intermediary equity return, the AEM broker-dealer leverage factor, and

the �Top-Six First PC� portfolio return, respectively). The price of the HKM factors in the

pooled regressions are not signi�cantly di�erent from zero. The AEM leverage factor helps

price equity portfolios, but is not priced consistently across asset classes. In contrast, our

CIP risk factor is consistently priced across asset classes and yields a signi�cant price of risk

in the pooled regressions. More discussion on how CIP risk factor compares with the HKM

and AEM factors can be found in Internet Appendix Section I.

The Internet Appendix also presents a number of other variants on Table 8. There is

a variant (Table A21) in which we use the HKM capital ratio innovation (along with the

Market and forward CIP return), which is non-tradable and is the primary speci�cation

in HKM. In this case, we can only test whether the risk prices of the traded factors are

consistent with their excess returns, and our results are noisier both in terms of standard
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errors and with respect to the weak identi�cation test. The Internet Appendix also contains

variants that use alternative measures in the place of the �Top-Six First PC� portfolio return.

Tables A23 and A24 use, respectively, AUD-JPY and USD-JPY, and Tables A25, A26, and

A27 use the other portfolios of forward CIP returns described in Table 3. Table A29 uses

the AR(1) innovation of the 3m OIS AUD-JPY spot basis instead of a forward CIP return.46

Table A30 replaces the forward CIP return in Table 8 with the AR(1) innovation (following

HKM) of the �rst principal component of the near-arbitrages described in Section 5.1, scaled

to match the volatility of the AUD-JPY forward CIP return. These variants generate results

that are similar to those of Table 8.

6 Conclusion

We provide direct evidence that innovations to the cross-currency bases are correlated with

the SDF. These results are consistent with our motivating hypothesis, derived from an

intermediary-based asset pricing framework and intertemporal hedging considerations. They

are also consistent with the correlation between the basis and other near-arbitrages, the cor-

relation between the basis and measures of intermediary wealth, and with our cross-sectional

asset pricing tests. Taken together, we view our results as strongly supportive of intermediary

asset pricing theory.

More broadly, we view this paper as beginning an investigation in the dynamics and

pricing of arbitrages induced by regulatory constraints. If intermediaries play a central role

46An AR(1) model provides a reasonable description of the spot basis post-GFC� the correlation between
the AR(1) innovation and the forward CIP return for AUD-JPY is 0.79 in the post-GFC data. However,
the forwards contain information not captured by the spot basis. For example, there was a large, correctly
anticipated spike in the 3m spot basis across year end 2019; such spikes were small or non-existent for the
3m tenor in prior years. As a result, the AR(1) innovation and forward CIP returns di�er sharply in fall
2019.
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in both asset pricing and the broader economy, then the question of how to measure the

constraints they face and the properties of those constraints is of �rst-order importance.
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Figures and Tables

Figure 1: Illustration of spot vs. forward cross-currency basis

Notes: This �gure illustrates the spot 3M cross-currency basis and the 1M-forward 3M cross-currency basis.
The spot basis isx t; 0;3 as de�ned in the text, and the forward basis is x t; 1;3 as de�ned in the text.
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Figure 2: Term Structure of the Forward Cross-Currency Basis

Notes: This �gure illustrates the time series average spot and forward-starting cross-currency bases in AUD
and JPY, vis-à-vis the USD, respectively, as de�ned in Equation (8). For each currency, the sample from
July 2010 to December 2020 is split into three sub-samples based on the tercile of the level of the spot 3M
OIS cross-currency basis. Within each sub-sample, the time series average of the relevant spot/forward OIS
cross-currency basis is shown.
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Figure 3: Illustration of the forward CIP trading strategy

Notes: This �gure illustrates the return on a 1M-forward 3M forward CIP trading strategy. At time t, the
trader enters the forward basis,x t; 1;3, which is the forward direct interest less the forward synthetic interest.
At time t + 1 , the trader unwinds the spot basis, � x t +1 ;0;3, which is the spot synthetic interest less the
spot direct interest. The realized monthly pro�t per dollar notional on this forward CIP trading strategy is
approximately the sum of the two bases:x t; 1;3 + ( � x t +1 ;0;3), normalized by the duration 3=12.

56



Figure 4: Cross-Currency Basis and Other Near-Arbitrages

Notes: This �gure plots the daily spot 3M AUD-JPY cross-currency basis and the scaled �rst principal
component of seven other near-arbitrages: the bond-CDS basis, the CDS-CDX basis, the US Libor tenor
basis, the 30-year Treasury-swap spread, the Refco-Treasury spread, the KfW-Bund spread, and the TIPS-
Treasury spread. The details of these other near-arbitrages are given in Internet Appendix G.
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Figure 5: Cross-Currency Basis and Intermediary Wealth

Notes: This �gure plots the monthly spot 3M AUD-JPY cross-currency basis and measures of intermediary
wealth and constraints from 2003 to 2020. The HKM Capital Ratio (in percent) is the equity capitalization
ratio of the primary dealer. The cumulative intermediary equity return is based on the value-weighted return
of the equity of primary dealers calculated from January 2003 and scaled by 10. The AEM leverage ratio (in
percent) is calculated as the ratio of book assets to book equity for the broker-dealer sector from the Flow
of Funds.
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Table 5: Returns on ON-TN Forward CIP Trade and Quarter-Ends

(1) (2) (3)
ON basis Lagged TN basis ON-TN Forward Pro�t

QE Dummy 154.1*** 207.4*** 53.25**
(32.77) (34.83) (25.17)

Constant 10.98*** 15.17*** 4.194***
(0.580) (0.545) (0.537)

Observations 4,953 4,953 4,953
R-squared 0.112 0.186 0.020

Notes: This table reports regression results for the overnight CIP deviations (Column 1), one-day lagged
tomorrow/next CIP deviations (Column 2) and the return on the ON-TN forward CIP trade (Column 3), or
the di�erence between Column 2 and Column 3. The independent variable is a quarter-end (QE) dummy,
which is equal to one if the date is equal to the last business date of the quarter. The sample currencies
include CHF, EUR and JPY. The CIP deviations are calculated as the di�erence between swapped foreign
central bank deposit rate into U.S. dollars and the U.S. interest rate on excess reserves. The sample period
is post-GFC from 2010-07-01 to 2020-12-31. Robust standard errors are reported in the parentheses. Details
on the ON and TN CIP deviations can be found in Internet Appendix F.
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Table 6: Pricing Fwd CIP Returns with Intermediary Wealth

1M-fwd 3M classic pc forward CIP returns
Monthly Returns Quarterly Returns

(1) (2) (3) (4) (5) (6) (7)

Market 0.011� 0.009 0.006 0.020���

(0.006) (0.009) (0.008) (0.006)
Int. Equity 0.007�� 0.002

(0.003) (0.004)
HKM Factor 0.004

(0.003)
AEM Factor 0.0001

(0.0001)
Constant 0.050��� 0.036��� 0.045��� 0.037��� 0.041��� 0.150��� 0.079��

(0.010) (0.010) (0.009) (0.011) (0.011) (0.032) (0.034)

Observations 126 126 126 126 126 42 42

Notes: In this table, we regress the returns of the "Top-Six First PC" forward CIP trading portfolio on a
constant and the intermediary wealth and constraint proxies described in the text: Market, Intermediary
Equity, the HKM Factor, and the AEM factor. Regressions (1) through (4) use monthly returns. Regressions
(5) and (6) use quarterly returns. Standard errors are computed using the Newey-West kernel with a twelve-
month (monthly) or four-quarter (quarterly) bandwidth. *, **, and *** denote signi�cance levels at 10%,
5%, and 1% con�dence levels.
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Table 7: Bayesian Posterior Prob of SDF Models with Fwd. Ret. PC

Factor Space Model Probability Subtotal
{Market, Int. Equity, Market 0.074
Fwd. Ret. PC} Int. Equity 0.002

Market + Int. Equity 0.046 0.123
Fwd. Ret. PC 0.380
Market + Fwd. Ret. PC 0.262
Int.Equity + Fwd. Ret. PC 0.048
Market + Int. Equity + Fwd. Ret. PC 0.187 0.877

{HKM Factor, Market, HKM Factor 0.001
Fwd. Ret. PC} HKM Factor + Market 0.111 0.112

HKM Factor + Fwd. Ret. PC 0.037
HKM Factor + Market + Fwd. Ret. PC 0.851 0.888

{AEM Factor, Market, AEM Factor 0.228
Fwd. Ret. PC} AEM Factor + Market 0.212 0.440

AEM Factor + Fwd. Ret. PC 0.449
AEM Factor + Market + Fwd. Ret. PC 0.112 0.560

Notes: In this table, we report posterior probabilities for factor models that do and do not include the
forward CIP return on the �Top-Six First PC" portfolio, using the method of Chib et al. (2020) (see Internet
Appendix J for details).
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Internet Appendix (not for publication)
"Are Intermediary Constraints Priced?"

A List of Tables and Figures

Paper Tables

1. USD-based pair returns OIS 1M-fwd-3M: Table 1

2. Top ten basis currency pair returns OIS 1M-fwd-3M: Table 2

3. Portfolio returns OIS 1M-fwd-3M: Table 3

4. Pre/Post COVID Portfolio returns OIS 1M-fwd-3M: Table 4

5. One-day forward CIP returns on quarter-ends: Table 5

6. Pricing Fwd CIP Returns with Existing Measures of Int. Wealth/Constraints: Table 6

7. Intercept test and Bayesian model probabilities: Table 7

8. Cross-sectional Test, Int. Equity + Fwd CIP Ret.: Table 8

Internet Appendix Tables

1. OIS and IBOR interest rate conventions: Table A1

2. Single Currency IBOR 1M-fwd-3M Returns: Table A2

3. Portfolio returns OIS 1M-fwd-1M: Table A3

4. Portfolio returns OIS 3M-fwd-3M: Table A4

5. Portfolio returns IBOR 1M-fwd-3M: Table A5

6. Portfolio returns IBOR 3M-fwd-3M: Table A6

7. Monthly (non-overlapping) portfolio returns OIS 1M-fwd-3M: Table A7

8. Post-GFC sub-sample analysis: Table A8

9. Posterior Model Probabilities, AUD-JPY: Table A9

10. Return predictability: Table A10

11. Return predictability, Pre-2020: Table A11
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12. 1M-fwd 1M Quarter-end return predictability: Table A12

13. Transaction costs: Table A13

14. Cross-sectional Test, Pre-2020 Data: Table A14

15. Cross-sectional Test, Market + HKM: Table A15

16. Cross-sectional Test, Market + Int. Equity: Table A16

17. Cross-sectional Test, Market + AEM: Table A17

18. Cross-sectional Test, Market + Fwd CIP Ret.: Table A18

19. Cross-sectional Test, Market + Int. Equity + Fwd CIP Ret.: Table A19

20. Cross-sectional Test, Int. Equity: Table A20

21. Cross-sectional Test, Market + HKM + Fwd CIP Ret.: Table A21

22. Cross-sectional Test, Int. Equity + Fwd CIP Ret. with risk-free rate adjustment:
Table A22

23. Cross-sectional Test, Int. Equity + AUD-JPY Fwd CIP Ret.: Table A23

24. Cross-sectional Test, Int. Equity + USD-JPY Fwd CIP Ret.: Table A24

25. GMM Cross-sectional Test, Int. Equity + 3 Currency Carry Fwd CIP Ret.: Table A25

26. Cross-sectional Test, Int. Equity + Dynamic Top 5 Fwd CIP Ret.: Table A26

27. Cross-sectional Test, Int. Equity + Top Ten Basis Fwd CIP Ret.: Table A27

28. Cross-sectional Test, Int. Equity + Fwd CIP Ret., Post-GFC sample: Table A28

29. Cross-sectional Test, Int. Equity + AR(1) Innovation of AUD-JPY: Table A29

30. Cross-sectional Test, Int. Equity + Near-Arbitrage First PC: Table A30

31. Summary stats of CIP and Near-Arbitrages: Table A31

32. Risk Prices and SDF Parameter Estimates: Table A32

Paper Figures

1. Illustration of spot vs. forward basis: Figure 1
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2. Forward basis term structure: Figure 2

3. Illustration of forward CIP trading strategy: Figure 3

4. Correlation of basis and PCA of other near-arbitrages: Figure 4

5. Correlation between Basis and Intermediary Wealth: Figure 5

Internet Appendix Figures

1. OIS 3M cross-currency basis: Figure A1

2. IBOR 3M cross-currency basis: Figure A2

3. Alternative term structure: Figure A3

4. Quarter-end crossing basis: Figure A4

5. Primary dealer repo outstanding and rate: Figure A5

B Model Details

In this Internet Appendix section we present a more detailed description of the model outlined

in Section 2, and a more formal statement of the key results.

Our model adopts the approach of He and Krishnamurthy (2011) and the subsequent

intermediary asset pricing literature (surveyed in He et al. (2017)), and in particular the

idea that the manager of the intermediary is an agent who should price assets. The model is

a discrete time version of He and Krishnamurthy (2011). We add to He and Krishnamurthy

(2011) a variety of assets, including both �cash� assets and derivatives, and a regulatory

constraint. We study a manager with CRRA or Epstein-Zin preferences (rather than focus on

log preferences), because these preferences will allow us to discuss the role that intertemporal

hedging concerns play in the model.47

47In augmenting the He and Krishnamurthy (2011) model with Epstein-Zin preferences, we are building
on Di Tella (2017) among others.
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The model is based on He and Krishnamurthy (2011), but is partial equilibrium in that

it considers only that intermediary manager's problem and not market clearing conditions.

In this sense, the model follows the spirit of the standard consumption-based asset pricing

approach. Our maintained assumption is that asset prices are consistent with the manager's

Euler equations. This assumption has a particularly signi�cant implication in the presence of

arbitrage opportunities: it implies that arbitrage can exist if and only if constraints prevent

the intermediary from taking advantage of the arbitrage.48

The manager is endowed with the ability to run an intermediary that survives for a single

period. In the beginning of the period, the manager will raise funds from households in the

form of both debt and equity, subject to various constraints, and choose how much of her

own wealth to contribute. The manager then invests these funds in a variety of assets. At the

end of the period, returns realize and the intermediary is dissolved. The manager receives

a payout based on her equity share in the intermediary. This payout, plus any savings the

manager holds outside the intermediary, determine the manager's wealth entering into the

next period.

Let W M
t denote the manager's wealth at the beginning of periodt, and let zt be a state

variable that determines the conditional (on timet information) distribution of asset returns.

These two variables are the state variables of the manager's optimization problem and are

the relevant portions of the manager's information set. Expectations should be understood

as conditioning on these two variables,

E t [�] = E[�jW M
t ; zt ]:

At the beginning of the period, the manager must decide on a contractual structure for

48We would like to thank Andreas Stathopoulos very a helpful discussion on this point.
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the intermediary she runs. The intermediary begins by raising equity capitalN t � 0. Of

the initial equity capital, N M
t is contributed by the manager, with the remainder coming

from households. The manager receives a share� t of the wealth that will be liquidated

when the intermediary is dissolved at the end of the period, with the remainder going to

households. Note that the share� t is not necessarily equal to the proportion of the equity

that the manager contributes; de�ne the fee

f m
t �

� tN t

N M
t

as the ratio of what the manager receives to what she contributes.

The manager raises equity and debt from households in a competitive market. LetM H
t+1

be the household's SDF, and let̂N t+1 be the value of the intermediary's equity after returns

are realized and the debt is repaid (we de�ne this variable in more detail below). LetB t be

the face value of the intermediary's debt, and letRb
t = exp(r b

t ) be its interest rate. For any

capital structure (� t ; N M
t ; N t ; B t ; Rb

t ) proposed by a manager with wealthW M
t in state zt ,

households will be willing to purchase the equity if

N t � N M
t � (1 � � t )E[M H

t+1 N̂ t+1 jzt ; WM
t ; (� t ; N M

t ; N t ; B t ; Rb
t )]:

The intermediary's debt must also be priced by the household's SDF,

1 = E t [M H
t+1 Rb

t ]:

Note that the expectation relevant for the equity purchase decision is conditional on the state

variableszt ; WM
t and the capital structure of the intermediary, but not on the intermediary's
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asset allocation (which we de�ne below). That is, the household must form a conjecture

about how the manager will choose to invest, and price the equity accordingly; the manager

cannot commit. This is a key friction, which is also employed by He and Krishnamurthy

(2011).

We have assumed that the intermediary is risk-free. We are ignoring the possibility of

default; the model of He and Krishnamurthy (2011) that we are building on is developed in

continuous time with continuous price processes, and hence also excludes the possibility of

default. We develop a discrete time model to make the intuition behind our hypothesized

SDFs clear, and have found that incorporating the possibility of default obfuscates that

intuition. 49

We next turn to the intermediary's budget constraints. We allow the manager of the

intermediary to divert resources from the intermediary instead of investing them. Let� t � 0

be the resources diverted. In equilibrium, households will ensure that diversion does not

occur by ensuring that� t , the manager's claim on the assets, is su�ciently high.

Let I be the set of all assets available to the intermediary. We partition this set into

�cash� and �derivative� assets,I c and I d, assuming that the former require an upfront cash

investment whereas the latter are contracts entered into with zero initial net-present-value.

Cash assets a�ect the intermediary's initial budget constraint, whereas the derivatives do

not. Let � i
t be the dollar amount (cash) or notional (derivative) invested in asseti , scaled

by the initial non-diverted intermediary equity N t .

49Note, however, that incorporating the possibility of default is necessary for the model to speak to issues
like whether it is to preferable to examine OIS or IBOR bases.
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The intermediary's initial budget constraint is

N t + B t = � t + N t

X

i 2 I c

� i
t :

The excess return (cash assets) or pro�t per unit notional (derivative assets) of asseti is

de�ned as Ri
t+1 � Rb

t . The distribution of these returns is a function ofzt , and the returns

are realized at the end of the period. The intermediary's net worth when it is liquidated at

the end of the period is therefore

N̂ t+1 = � Rb
t B t + N t

X

i 2 I c

� i
tR

i
t+1 + N t

X

i 2 I d

� i
t (R

i
t+1 � Rb

t );

which can be re-written as

N̂ t+1 = Rb
t (N t � � t ) + N t

X

i 2 I

� i
t (R

i
t+1 � Rb

t ):

Using this de�nition, we can rewrite the household's equity participation constraint as

N t � N M
t � (1 � � t )(N t � � �

t )

+ N t (1 � � t )E t [M H
t+1

X

i 2 I

� i �
t (Ri

t+1 � Rb
t )]);

where � �
t and � i �

t are the policies that the household conjectures based on observing the

state variables and capital structure.

Lastly, as described in the text, we assume that the intermediary operates under a regu-

A.7



latory constraint that a�ects only cash assets:

1 �
X

i 2 I c

ki j� i
t j:

Note that we have assumed that the regulatory constraint cannot limit the cash�ow diversion

of the manager.50

These constraints describe the operation of the intermediary. We next turn to the deci-

sions and preferences of the manager. We assume the manager has Epstein-Zin preferences

(Epstein and Zin (1989)), with risk-aversion parameter
 , intertemporal elasticity of substi-

tution parameter  , and a subjective discount factor of� , and de�ne � = 1� 

1�  � 1 . Whatever

wealth she does not consume or invest in the intermediary, plus any resources she diverts

from the intermediary, is saved in risk-free assets, but the manager cannot borrow. When

the manager diverts� t resources from the intermediary, she receives only(1+ � )� 1� t , which

she can save in the risk-free asset. As a result, her wealth entering the next period is

W M
t+1 = Rb

t (W
M
t � CM

t � N M
t +

� t

1 + �
) + � t N̂ t+1 ;

where the �rst term represents the intermediary's outside savings and the second her share

of the intermediary's liquidation value.

We now de�ne the Bellman equation describing the manager's problem. The manager

50Our model inherits from He and Krishnamurthy (2017) the somewhat awkward assumption that the
manager cannot commit when choosing an asset allocation, even though the regulator can limit the manager's
asset allocation.
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solves

V(W M
t ; zt ) = max

CM
t � 0;N M

t � 0;N t � 0;� t 2 [0;1];� t � 0;f � i
t gi 2 I

f (CM
t )1�  � 1

+ �E t [V (W M
t+1 ; zt+1 )1� 
 ]�

� 1
g

1
1�  � 1 ;

subject to

N̂ t+1 = Rb
t (N t � � t ) + N t

X

i 2 I

� i
t (R

i
t+1 � Rb

t );

W M
t+1 = Rb

t (W
M
t � CM

t � N M
t +

� t

1 +  
) + � t N̂ t+1 ;

CM
t + N M

t � W M
t ;

N t � N M
t � (1 � � t )(N t � � �

t )

+ N t (1 � � t )E t [M H
t+1

X

i 2 I

� i �
t (Ri

t+1 � Rb
t )];

X

i 2 I c

ki j� i
t j � 1;

N M
t � N t :

In de�ning this problem, we have eliminated the debt levelB t as a choice variable by substi-

tuting out the initial budget constraint, and we have assumed that the manager will choose

to o�er a capital structure acceptable to households. This assumption is without loss of

generality, as the manager can always setN M
t = N t ; � t = 1, which is equivalent to having

her o�er rejected. Note also that this problem is part of an equilibrium of a capital raising

game. That is, the households expectations� �
t and � i �

t are functions of the proposed capital

structure and must be consistent with the manager's ultimate choices given that capital
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structure.51

We next describe a lemma that collects a number of simplifying results, in particular

focusing on an equilibrium in which no cash�ow diversion occurs in equilibrium and the

anticipated asset allocation depends only in the investment opportunities. These results are

essentially identical to statements contained in He and Krishnamurthy (2011).

Lemma 1. In the manager's problem, there exists an equilibrium in which:

1. The optimal allocation� i �
t is a function only of the state vectorzt , and satis�es

� 1 < E t [M H
t+1

X

i 2 I

� i �
t (Ri

t+1 � Rb
t )] <

1
�

;

2. There is no diversion,� t = � �
t = 0, and the manager's share satis�es� �

t � (1 + � )� 1,

3. The household equity participation constraint binds,

4. The manager invests all savings in the intermediary,CM
t + N M

t = W M
t , with N M

t > 0,

5. The manager's share� �
t and feef M

t are functions only ofzt , with

f M
t (zt ) =

� �
t (zt )

� �
t (zt ) � (1 � � �

t (zt ))E t [M H
t+1

P
i 2 I � i �

t (Ri
t+1 � Rb

t )]
:

6. f M
t (zt ) � 1, strictly if and only if E t [M H

t+1

P
i 2 I � i �

t (Ri
t+1 � Rb

t )] > 0, and � �
t = (1+ � )� 1

if f M
t > 1.

Proof. See below.

51Formally, we do not require that this equilibrium be subgame perfect. This simpli�cation allows us
to focus directly on an equilibrium in which the manager puts all her savings in the intermediary. He and
Krishnamurthy (2011) Lemma 2 proves (in the context of their model; our model is essentially the discrete
time version) that this outcome holds in all equilibria.
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With these results, the manager's �nal wealth is

W M
t+1 = � t N̂ t+1

= ( W M
t � CM

t )f M
t (zt )(Rb

t +
X

i 2 I

� i
t (R

i
t+1 � Rb

t )) ;

and the manager's problem can be written as

V(W M
t ; zt ) = max

CM
t � 0;f � i

t gi 2 I

f (CM
t )1�  � 1

+ �E t [V (W M
t+1 ; zt+1 )1� 
 ]�

� 1
g

1
1�  � 1 ;

subject to

W M
t+1 = ( W M

t � CM
t )f M

t (zt )(Rb
t +

X

i 2 I

� i
t (R

i
t+1 � Rb

t )) ;

X

i 2 I c

ki j� i
t j � 1:

It is useful to de�ne the log return on the manager's wealth,

r w
t+1 = ln( f M

t ) + ln( Rb
t +

X

i 2 I

� i
t (R

i
t+1 � Rb

t ))

= ln(
W M

t+1

W M
t � CM

t
):

This de�nition includes the fee f M
t , unlike the usual de�nition of the return on wealth. As

shown in Lemma 1, this fee will be positive if and only the intermediary's portfolio earns an

abnormal return under the household's SDF, and in this case the �inside equity� constraint

� �
t � (1 + � )� 1 will bind. This is natural, but not guaranteed, in the presence of arbitrage
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opportunities.

For example, if the intermediary can only 1) engage in arbitrage or 2) buy assets that are

also priced under the household's SDF, and arbitrage opportunities exist, then it must the

case thatf M
t > 1. However, if the intermediary can also buy assets that are �expensive� from

the household's perspective, then even in the presence of arbitrage opportunities it is not

necessarily the case thatf M
t > 1. This kind of indi�erence occurs in He and Krishnamurthy

(2011) when the inside equity constraint does not bind (normal times).

In the main text, we assume thatf M
t = 1 to illustrate the point that the regulatory

constraint can bind even if the inside equity constraint does not. In the remainder of this

Internet Appendix, we present results that includef M
t . Note also that f M

t can vary over

time (in particular, when the economy transitions from �normal� to �crisis� times), and that

the increase inf M
t in crisis times generates an additional intertemporal hedging motive.52

We next derive the Euler equation for consumption and the �rst-order conditions for

portfolio choice in the usual way, following Epstein and Zin (1989). The only complications

that our model introduces relative to Epstein and Zin (1989) are the feef M
t , which alters

the de�nition of the wealth return, and the constraint, which introduces a multiplier into

the portfolio choice problem but does not change the consumption Euler equation. We

summarize these equations in the lemma below, and for completeness provide a derivation

at the end of this section.

Lemma 2. De�ne � cM
t+1 = ln( CM

t+1 ) � ln(CM
t ), and mt+1 = � ln(� ) + ( � � 1)r w

t+1 � �
 � cM

t+1 .

For the manager's problem, the �rst-order condition associated with the consumption-savings

52Exploring the interactions between intertemporal hedging and the non-linearity in intermediary asset
pricing models is an interesting avenue for future research. We thank David Chapman for pointing out this
possibility.
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decision is

1 = E t [exp(mt+1 + r w
t+1 )]

and the �rst-order condition for � i
t is

E t [exp(mt+1 )(Ri
t+1 � Rb

t )] = � RC
t ki sgn(� i

t );

Proof. See below.

Consider in particular the �rst-order conditions associated with a foreign currency risk-

free bond and with a forward contract on the exchange rate. The return on the foreign

currency bond isRc
t

St
St +1

, and the pro�t of the forward (a derivative) is St +1 � Ft; 1

St +1
per dollar

notional. The two �rst-order conditions are

E t [exp(mt+1 )(Rc
t

St

St+1
� Rb

t )] = � RC
t kcsgn(� c

t )

and

E t [exp(mt+1 )(
St+1 � Ft;1

St+1
)] = 0 :

Combining these two equations yields

E t [exp(mt+1 )(Rc
t

St

Ft;1
� Rb

t )] = � RC
t kcsgn(� c

t );

or

E t [exp(mt+1 )]Rb
t (exp(� x t;1) � 1) = � RC

t kcsgn(� c
t );
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wherex t;1 is de�ned as in the main text. Taking absolute values gives Equation (4).

Combining this equation with the �rst-order condition for an arbitrary asset i , we have

E t [exp(mt+1 )(Ri
t+1 � Rb

t (1 + sgn(� i
t )

ki

kc
j1 � exp� x t;1j)] = 0 :

We conclude that, holding risk premia constant, the absolute value of the cross-currency basis

should predict asset returns, at least for those assets the intermediary is consistently long

or short. However, the "holding risk premia" constant caveat is potentially quite important.

It may very well be the case that the cross-currency basis co-moves with other variables in

zt that predict changing variances and co-variances, and hence risk premia and expected

returns.

We should also emphasize that this prediction is di�cult to test. Return predictability

regressions often require long time series, but our theory only applies to the period in which

regulatory constraints create CIP violations (essentially the post-�nancial-crisis period). It

may be possible to construct stronger tests even in short data samples by imposing structure

on the coe�cients ki =kc, by taking a stand on the nature of the regulatory constraint. For

example, a pure leverage constraint might set all of these coe�cients to unity for all assets

i . Our approach focuses on a di�erent prediction of the model, which we derive next.

Let us consider the �rst-order condition associated with the wealth portfolio. We have

E t [exp(mt+1 )(
X

i 2 I

� i �
t (Ri

t+1 � Rb
t ))] = � RC

t

X

i 2 I

� i �
t ki sgn(� i

t );

which is

E t [exp(mt+1 )(exp(r w
t+1 � ln(f M

t )) � Rb
t )] = � RC

t :
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This simpli�es to Equation (5) in the f M
t = 1 case.

We next apply the log-normality approximation used by Campbell (1993), and assume

that all conditional variances and covariances are constant (i.e. that the model is ho-

moskedastic). Under these assumptions, and using the �rst-order approximation

ln(1 +
ki

kc
sgn(� i

t )j1 � exp(� x t;1)j) �
ki

kc
sgn(� i

t )jx t;1j;

we can simplify the Euler equation for asseti to

E t [r i
t+1 ] � r b

t +
1
2

(� i )2 =
�
 

� ic + (1 � � )� iw +
ki

kc
sgn(� i

t )jx t;1j; (A1)

where r i
t+1 = ln( Ri

t+1 ), (� i )2 is the conditional variance of the log return,� ic is the condi-

tional covariance of the log return and log consumption growth, and� iw is the conditional

covariance of the log return and the log wealth return. Compared to the textbook formula

(Campbell (2017)), the expected excess return now includes an e�ect of the cross-currency

basis, scaled by the relative risk-weights between asseti and the foreign-currency bond. This

result is essentially the �margin-based CCAPM� result of Garleanu and Pedersen (2011), ex-

cept that we have used a cross-currency basis to measure that shadow value of the constraint

and employed Epstein-Zin preferences instead of CRRA utility.

Using the standard approximation for the return of the wealth portfolio (Campbell

(2017)), and accounting for the possibility of extra fee income, we have

E t [r w
t+1 � ln(f M

t )] � r b
t +

1
2

(� w)2 =
X

i 2 I

� i
t (E t [r i

t+1 ] � r b
t +

1
2

(� i )2)

=
�
 

� wc + (1 � � )� w2
+

1
kc

jx t;1j:
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It follows by the homoskedasticity assumption and the law of iterated expectations that

(E t+1 � E t )[r w
t+1+ j ] = ( E t+1 � E t )[r b

t+ j + ln( f M
t+ j ) +

1
kc

jx t;1j]:

We next combine the log-linear approximation of the intertemporal budget constraint

developed by Campbell (1993) and the Euler equation for the consumption-savings decision

derived in Lemma 2. These two equations together show that

� cM
t+1 � E t [� cM

t+1 ] = r w
t+1 � E t [r w

t+1 ] + (1 �  )
1X

j =1

� j (E t+1 [r w
t+1+ j ] � E t [r w

t+1+ j ]):

Note that this formula is identical to a result in Campbell (1993), because the Euler equation

for the consumption-savings is not distorted by the regulatory constraint (which only a�ects

the asset allocation).

Plugging our equation for the expected return on the wealth portfolio into this equation,

and then the resulting expression for consumption growth into the equation de�ning the

return of an arbitrary asset i (equation (A1)), leads to our main result.

Theorem 3. The expected arithmetic excess return of an arbitrary asseti can be written as

E t [r i
t+1 ] � r b

t +
1
2

(� i )2 = 
� iw + ( 
 � 1)� ih +
ki

kc
sgn(� i

t )jx t;1j; (A2)

where� iw is the conditional covariance with the wealth portfolio and

� ih = Covt [r i
t+1 ;

1X

j =1

� j (E t+1 � E t )(
1
kc

jx t+ j; 1j + ln( f M
t+ j ) + r b

t+ j )]: (A3)

This theorem arrives at the usual conclusion that, if
 > 1, the manager will be concerned
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about hedging her investment opportunities, and will demand a risk premium for assets whose

returns co-vary with those investment opportunities. Conversely, if
 < 1, the manager

prefers assets whose returns co-vary with her investment opportunities, because those assets

allow the manager to better take advantage of those investment opportunities.

Future arbitrage opportunities are a particularly stark example of an investment oppor-

tunity, and indicative of the expected returns on the wealth portfolio, and hence returns that

negatively co-vary with future arbitrages should have a high risk premium if
 < 1 and a

low risk premium if 
 > 1.

The last piece of our argument is the conjecture (which is veri�ed in the data) that

arbitrage opportunities are likely to be persistent. As a result, shocks to the cross-currency

basis at time t + 1 are likely to be indicative of shocks to the arbitrage at later dates. For

illustrative purposes only (and ignoring issues about negative numbers), suppose thatjx t;1j

follows an AR(1) process,

jx t+1 ;1j = �x + � jx t;1j + � jx j � t+1 ;

where� t+1 is an I.I.D. standard normal shock. In this case, we have

1X

j =1

� j (E t+1 [�jzt+1 ] � E [�jzt ])
1
kc

jx t+ j; 1j) =
1
kc

1
1 � ��

� jx j � t+1 :

Under very strong assumptions (i.e. that borrowing ratesr b
t+ j and feesf m

t+ j are uncorrelated

with � t+1 ), the constant 1� 

kc

1
1� �� � jx j is equal to the value of� de�ned in our hypothesized

functional form for the family of log SDFs described in the text. More generally, projecting

the revisions in expectations found in Equation (A3) onto the current innovation in the

cross-currency basis, under the assumption that such innovations are persistent, generates

our hypothesized functional form for the family of log SDFs introduced in Equation (1).
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B.1 Proof of Lemma 1

First, observe that diversion does not change� i �
t in the conjectured equilibrium. Conse-

quently, the net bene�t of stealing is proportional to

�R b
t E t [V (W M

t+1 ; zt+1 )� 
 VW (W M
t+1 ; zt+1 )](

1
1 + �

� � t );

and by the usual argumentsVW (W M
t+1 ; zt+1 ) > 0. If 1

1+ � > � t , stealing has a net bene�t,

and this bene�t does not diminish. Consequently, there cannot be a solution with outside

equity (N M
t > N t ). Conversely, if 1

1+ � � � t , diversion has a weakly negative net bene�t, and

it is without loss of generality to suppose diversion does not occur in equilibrium. By the

argument in the main text, it is without loss of generality to suppose 1
1+ � � � t and there is

no equilibrium stealing.

Now consider a perturbation which increasesN t but shrinks � i
t so that � i

tN t remains

constant for all assets. If the household participation constraint does not bind, this generates

a strict welfare improvement for the manager and is always feasible. Therefore, the household

participation constraint binds,

� tN t (1 �
(1 � � t )

� t
E t [M H

t+1

X

i 2 I

� i �
t (Ri

t+1 � Rb
t )]) = N M

t :

Note by assumption that

� 1 < E t [M H
t+1

X

i 2 I

� i �
t (Ri

t+1 � Rb
t )] <

1
�

�
� t

1 � � t

and hence that positive values ofN M
t and N t are feasible. Observe that ifN M

t = N t = 0,
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the manager is taking no risk, which cannot be optimal by the principle of participation.

Therefore these values are strictly positive.

Under these assumptions, the manager's feef M
t is a function of zt and � t ,

f M
t (� t ; zt ) =

� t

� t � (1 � � t )E[M H
t+1

P
i 2 I � i �

t (Ri
t+1 � Rb

t )jzt ]
;

Moreover, the manager's �nal wealth is

W M
t+1 = Rb

t (W
M
t � CM

t � N M
t ) + N M

t f M
t (� t ; zt )(Rb

t +
X

i 2 I

� i
t (R

i
t+1 � Rb

t )) :

Note that f M
t (� t ; zt ) is strictly increasing in� t if E t [M H

t+1

P
i 2 I � i �

t (Ri
t+1 � Rb

t )] < 0 and strictly

decreasing ifE t [M H
t+1

P
i 2 I � i �

t (Ri
t+1 � Rb

t )] > 0. In the increasing case, we must have� �
t = 1

and in this casef M
t = 1; in the decreasing case,f M

t � 1, strictly if E t [M H
t+1

P
i 2 I � i �

t (Ri
t+1 �

Rb
t )] > 0, and thereforef M

t � 1 always. It also follows that� �
t is purely a function ofzt , and

hence the feef M
t is also purely a function ofzt .

Now consider a perturbation that increasingN M
t while scaling down� i

t so that N M
t f M

t (� t ; zt )� i
t

remains constant for alli 2 I . This perturbation has a weak net bene�t, as it increasesW M
t+1 ,

and hence it is without loss of generality to supposeN M
t = W M

t � CM
t .

We have demonstrated the stated properties conditional in the conjectured that� i �
t is a

function only of zt . We now show that this an equilibrium. We scale variables by wealth.

De�ne cm
t = CM

t
W M

t
. The problem is
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V(W M
t ; zt ) = max

cM
t � 0;f � i

t gi 2 I

f (W M
t )1�  � 1

(cM
t )1�  � 1

+ �E t [V (W M
t+1 ; zt+1 )1� 
 ]�

� 1
g

1
1�  � 1 ;

subject to

W M
t+1

W M
t

= f M
t (zt )Rb

t (1 � cM
t ) + (1 � cM

t )f M
t (zt )

X

i 2 I

� i
t (R

i
t+1 � Rb

t );

X

i 2 I c

ki j� i
t j � 1:

We can immediately (following Epstein and Zin (1989)) conjecture and verify thatV(W M
t ; zt )

is linear in wealth,

V(W M
t ; zt ) = W M

t J (zt )

for some functionJ (zt ), and that as a result the optimal policies do not depend on wealth

(or any capital structure variables), verifying the conjecture.

B.2 Proof of Lemma 2

De�ne

Rw
t+1 = f M

t (zt )(Rb
t +

X

i 2 I

� i
t (R

i
t+1 � Rb

t )) :
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Using homotheticity, V(W M
t ; zt ) = W M

t J (zt ), and writing the problem in Lagrangean form,

J (zt ) = max
cM

t � 0;f � i
t gi 2 I

min
�̂ RC

t � 0

f (cM
t )1�  � 1

+ �E t [((1 � cM
t )Rw

t+1 )(1� 
 )J (zt+1 )1� 
 ]�
� 1

g
1

1�  � 1

+ �̂ RC
t (1 �

X

i 2 I c

ki j� i
t j):

The Euler equation is derived in the usual way. Taking the FOC with respect tocM
t ,

(cM
t )�  � 1

= � (1 � cM
t )�  � 1

E t [(Rw
t+1 )(1� 
 )J (zt+1 )1� 
 ]�

� 1
;

and plugging this back into the Bellman equation,

J (zt ) = f (cM
t )1�  � 1

+ (1 � cM
t )(cM

t )�  � 1
g

1
1�  � 1

= f (cM
t )�  � 1

g
1

1�  � 1 :

Therefore, the Euler equation is reads

(cM
t )�  � 1

= � (1 � cM
t )�  � 1

E t [(Rw
t+1 )(1� 
 ) f (cM

t+1 )�  � 1
g� ]�

� 1
:

We can rearrange this to

1 = E t [(Rw
t+1 )(1� 
 ) f � (1 � cM

t )�  � 1
(
cM

t+1

cM
t

)�  � 1
g

1� 

1�  � 1 ];

and then substitute cM
t = CM

t
W M

t
and cM

t+1 =
CM

t +1

W M
t +1

,
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1 = E t [(Rw
t+1 )(1� 
 ) f � (1 � cM

t )�  � 1
(

W M
t

W M
t+1

)�  � 1 CM
t+1

CM
t

)�  � 1
g� ]:

Using the budget constraint
W M

t +1

W M
t

= (1 � cM
t )Rw

t+1 , we have

1 = E t [(Rw
t+1 )(1� 
 ) f � (Rw

t+1 ) � 1
(
CM

t+1

CM
t

)�  � 1
g� ]:

Noting that

(1 � 
 )(1 +
 � 1

1 �  � 1
) = �;

we conclude that the standard consumption Euler equation applies,

1 = E t [(Rw
t+1 )� f �

CM
t+1

CM
t

)�  � 1
g� ]:

The FOC for asseti is

1
1 �  � 1

f (cM
t )1�  � 1

+ �E t [((1 � cM
t )Rw

t+1 )(1� 
 )J (zt+1 )1� 
 ]�
� 1

g
1

1�  � 1 � 1�

� � 1(1 � 
 )E t [� � ((1 � cM
t )Rw

t+1 )(1� 
 )J (zt )1� 
 ]�
� 1 � 1�

(1 � cM
t )1� 
 E t [� � (Rw

t+1 )� 
 J (zt+1 )1� 
 (Ri
t+1 � Rb

t )] = �̂ RC
t kcsgn(� c

t ):
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We can substitute

E t [� � (Rw
t+1 )� 
 J (zt+1 )1� 
 (Ri

t+1 � Rb
t )] =

(cM
t )�  � 1 � E t [� � (Rw

t+1 )� 
 (
cM

t+1

cM
t

)�  � 1 � (Ri
t+1 � Rb

t )] =

(cM
t )�  � 1 � E t [� � (Rw

t+1 )� 
 (
W M

t

W M
t+1

CM
t+1

CM
t

)�  � 1 � (Ri
t+1 � Rb

t )] =

(1 � cM
t ) � 1 � (cM

t )�  � 1 � E t [� � (Rw
t+1 ) � 1 � � 
 (

CM
t+1

CM
t

)�  � 1 � (Ri
t+1 � Rb

t )] =

(1 � cM
t ) � 1 � (cM

t )�  � 1 � E t [� � (Rw
t+1 )� � 1(

CM
t+1

CM
t

)�  � 1 � (Ri
t+1 � Rb

t )]:

Re-scaling�̂ t to � t results in the FOC in the lemma,

E t [� � (Rw
t+1 )� � 1(

CM
t+1

CM
t

)�  � 1 � (Ri
t+1 � Rb

t )] = � RC
t kcsgn(� c

t ):

C Equivalent de�nition of the Forward CIP basis

In this section, we show the equivalence between the two de�nitions for the forward cross-

currency basis given by equations (8) and (9), under the assumption of no-arbitrage between

A.23



forward interest swap rates and term structure of spot interest swap rates.

x t;h;� = r $
t;h;� � r c

t;h;� �
12
�

(f t;h + � � f t;h )

=
�

h + �
�

r $
t;0;h+ � �

h
�

r $
t;0;�

�
�

�
h + �

�
r c

t;0;h+ � �
h
�

r c
t;0;�

�
�

12
�

(f t;h + � � f t;h )

=
h + �

�

�
(r $

t;0;h+ � � r c
t;0;h+ � ) �

12
h + �

(f t;h + � � st )
�

�
h
�

�
(r $

t;0;h+ � � r c
t;0;h+ � ) �

12
�

(f t;� � st )
�

=
h + �

�
x t;0;h+ � �

h
�

x t;0;h ;

where the second equality follows no arbitrage between forward interest swap rates and the

term structure of spot interest swap rates. This no-arbitrage condition likely holds in practice

because arbitrage between interest rate derivatives is not strongly a�ected by most real-world

regulatory constraints. It holds in our model under the assumption that derivatives are not

subject to the regulatory constraint.

D Pro�t Calculations

In this section we detail the calculation of pro�ts for the forward CIP trading strategy, and

then show how that can be mapped to the cross-currency basis variables we have de�ned.

We will use yen as our example currency.

At time t, the strategy

1. receives �xed (pays �oating) on one dollar notional of ah-month forward-starting � -

month interest-rate swap in dollars at annualized �xed rateR$
t;h;� ,

2. enters into ah-month forward agreement to sellFt;h yen in exchange for one dollar,
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3. pays �xed (receives �oating) on Ft;h yen notional of a h-month forward-starting � -

month interest-rate swap in dollars at rateRc
t;h;� , and

4. enters into ah + � -month forward agreement to buyFt;h (Rc
t;h;� )

�
12h yen in exchange for

dollars at the exchange rateFt;h + � .

At time t + h, the strategy is unwound. The trader

1. unwinds the receive-�xed dollar swap, earning(
R$

t;h;�

R$
t + h; 0;�

)
�

12h � 1 dollars,

2. cash-settles theh-month forward, earning St + h � Ft;h

St + h
dollars,

3. unwinds the pay-�xed swap, earningFt;h

St + h
(1 � (

Rc
t;h;�

Rc
t + h; 0;�

)
�

12h ) dollars, and

4. unwinds theh + � -month forward, earning( 1
Ft + h;�

� 1
Ft;h + �

)
Ft;h (Rc

t;h;� )
�

12h

(R$
t + h; 0;� )

�
12h

:

In this last expression, we have usedR$
t+ h;0;� as the discount rate on the forward pro�ts

(converted to dollars). In our model, because derivatives are una�ected by the regulatory

constraint, the dollar risk-free rate is in indeed the correct discount rate for the forward

pro�ts. If net derivative pro�ts a�ected the regulatory constraint, the appropriate discount

rate would depend on questions like whether the trader could unwind or net the derivatives

instead of simply taking an o�setting position. However, as a practical matter, the choice of

discount rate has a minuscule e�ect on the computed pro�ts.

Therefore, total pro�t per dollar notional (i.e. the excess return) is

� c
t+ h;h;� = (

R$
t;h;�

R$
t+ h;0;�

)
�

12h �
Ft;h

St+ h
(

Rc
t;h;�

Rc
t+ h;0;�

)
�

12h + (
1

Ft+ h;�
�

1
Ft;h + �

)(
Rc

t;h;�

R$
t+ h;0;�

)
�

12h Ft;h :
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Recall the de�nition of the cross-currency basis,

(Rc
t+ h;0;� )

�
12h St+ h =

(R$
t+ h;0;� )

�
12h Ft+ h;�

(1 + X c
t+ h;0;� )

�
12h

and

(Rc
t;h;� )

�
12h Ft;h =

(R$
t;h;� )

�
12h Ft;h + �

(1 + X c
t;h;� )

�
12h

:

Plugging in these de�nitions,

� c
t+ h;h;� = (

R$
t;h;�

R$
t+ h;0;�

)
�

12h

(

1 �
Ft;h + �

Ft+ h;�
(
1 + X c

t+ h;0;�

1 + X c
t;h;�

)
�

12h + (
Ft;h + �

Ft+ h;�
� 1)

1
(1 + X c

t;h;� )
�

12h

)

:

This exact pro�t formula is complicated by a variety of discounting e�ects that arise in

the presence of arbitrage. Note, however, that all of these e�ects (deviations of interest rates

and forward exchange rates from their previous forward values) are typically at most a few

hundred basis points. In the presence of cross-currency basis values that on the order of basis

points, these discounting e�ects will be a couple percent of some basis points, and hence for

the most part negligible.

We therefore employ a �rst-order approximation. De�ne

� F
t+ h;h;� = ln (

Ft+ h;�

Ft;h + �
);

� R
t+ h;h;� = ln (

R$
t+ h;�

R$
t;h;�

):

A.26



Taking a �rst-order expansion aroundxc
t;h;� = xc

t+ h;� = � F
t+ h;h;� = � R

t+ h;h;� = 0, we have

� c
t+ h;h;� � � c

t+ h;h;� =
�

12h
(xc

t;h;� � xc
t+ h;0;� ):

Annualizing these monthly pro�ts gives the formula employed in the main text.

E Forward CIP Trading Strategy's Return Predictability

In this Internet Appendix section, we consider whether the returns of our forward CIP

trading strategy are predictable. In the context of the model, as usual, return predictability

implies time variation in either the quantity or price of cross-currency basis risk.53

We �nd evidence that the level of the basis predicts the return of the forward CIP

trading strategy, and suggestive but not de�nitive evidence that the slope of the forward

CIP trading strategy �term structure� also predicts returns. The former is consistent with

our �nding that risk premia are higher on quarter ends, and with the intuition that when

constraints are tight, the risk that they tighten further is higher. This might be expected on

the grounds that tighter intermediary constraints tend to coincide with higher levels of risk

premia (a point emphasized in the intermediary asset pricing literature, for example in He

and Krishnamurthy (2011)). The latter is analogous to �ndings of return predictability in

the term structure literature (e.g. Campbell and Shiller (1991)).

The statistical signi�cance of our results on the slope varies across speci�cations, and

depending on whether or not the data sample includes the COVID-19 crisis. For this reason,

we view these results as suggestive rather than de�nitive.

The return predictability regressions we run are presented in Internet Appendix Tables

53In Internet Appendix F, we explore a di�erent kind of predictability, related to quarter-end e�ects.
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A10 (full post-GFC sample) and A11 (post-GFC, pre-2020). The regressions estimate equa-

tions of the form

xc
t;h;� � xc

t+ h;0;� = � + � (xc
t;h;� � xc

t;0;� ) + 
x c
t;0;� + � t+ h; (A4)

where some of� , � , and 
 may be set to zero. We use three-month tenors (� = 3) and

look at one-month forward di�erences between the forward basis and the spot basis that is

actually realized (h = 1). We use the �classic carry� AUD-JPY basis in all regressions (this

avoids the need to de�ne a spot basis or slope for our �First PC� portfolio). We estimate

the regressions in monthly data. Note that our outcome variable is not exactly the pro�t

per dollar notional de�ned in equation (11), because we do not scale the outcome variable

by the duration �
12. This is analogous to regressing yield changes on yields instead of price

changes on yields.

The �rst column of Table A10 simply regresses the outcome variable on a constant. We

estimate an unconditional mean of 6.2 basis points and a root mean squared error of 12.5

basis points. In other words, on average, the one-month forward implied three-month classic

carry basis is 6.2 basis points higher than the spot three-month basis one month in the

future.

The next four columns of Table A10 present the estimations of equation (A4) with various

coe�cients restricted to zero. The speci�cations without the constant have the appealing

property that, in a world in which both the spot and forward bases are zero (covered interest

parity holds), we should expect no return on our forward CIP trading strategy. In the full

sample, our estimate for the slope coe�cient is positive but statistically insigni�cant, and

our estimate for the basis coe�cient is signi�cant at the 5% level.
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In the pre-2020 sample (Table A11), which excludes the COVID-19 crisis, both coe�-

cients are statistically signi�cant. During March 2020, both of the predictor variables in our

regression (the slope and the spot basis) reached extreme values. Our regression results are

thus (unsurprisingly) somewhat sensitive to the include of this time period.

One concern with using the spread as a predictor for the forward CIP return is that the

forward basisxc
t;h;� enters both sides of equation (A4), and is surely measured with some

bid-o�er induced noise. This issue is exactly analogous to the role of a price in a regression of

return on lagged return (as in Roll (1984)). A standard approach to dealing with these issues

is to avoid using the current value of the forward basis as a predictor value, and replace it

with a lagged value instead (see, e.g., Jegadeesh (1990)). We adopt this approach, employing

a lagged value of the spread,xc
t � k;h;� � xc

t � k;� , as an instrument for the current value of the

spread. Columns (6), (7), and (8) of Table A10 repeat the speci�cations of columns (2), (3),

and (4), using a spread lagged by one business day as an instrument for the current spread

value. Our point estimates remain similar across speci�cations, and the lagged spread is

reasonably predictive of the current spread (as measured by the 1st stage F statistic). We

should emphasize that this lag approach is not a panacea (Jegadeesh and Titman (1995)).

We have no theory on what causes the spread to vary over time, and hence cannot say

decisively that the "real" variation dominates the micro-structure induced variation over a

one or two-week period.

F Overnight (ON) and Tomorrow/Next (TN) CIP Deviations

In this Internet Appendix, we demonstrate how to calculate ON and TN CIP deviations. The

standard formula for spot and forward CIP deviations (equations (6) and (8) in the paper)

do not apply for these short-dated deviations because the spot exchange rate generally settles
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with T+2 convention, making the spot contract e�ectively a two-day forward contract. The

ON calculation follows the formula in Correa et al. (2020). We use central bank deposit rates

as the cash market interest rates, as these administered rates do to change outside central

bank meetings. We use spot exchange rates and ON and TN forward points from Bloomberg

<BFIX> based on quotes at 8:00 AM New York time.

To calculate the ON CIP deviation, we use the following formula:

xON = ((1 + r � N ON =d) � (S � � T N =D)=(S � � T N =D � � ON =D) � 1) � (d=NON ) � r $;

where r is the foreign interest rate on foreign central bank deposit,r $ is the interest on

reserves paid by the Federal Reserve,S is the spot exchange rate (de�ned as units of foreign

currency per dollar), � T N and � ON are the forward points on the ON and TN contracts,

respectively,d = 360 is the day count convention,D is the forward point multiplier (10000

for EUR and CHF, and 100 for JPY), andN ON is the number of calendar days between the

trading date and the ON contract settlement date (T+1).

To calculate the TN CIP deviation, we use the following formula:

xT N = ((1 + r � N T N =d)=S� (S � � T N =D) � 1) � (d=NT N ) � r $;

whereN T N is the number of calendar days from between the ON contract settlement date

(T+1) and the TN contract settlement date (T+2).

G De�nitions of Other Near-Arbitrages

We de�ne the seven near-arbitrages as follows.
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� Bond-CDS basis : the spread between the yield on the 5-year North America invest-

ment grade bonds over their corresponding credit default swaps (CDS). The series is

from the J.P. Morgan Markets DataQuery.

� CDS-CDX basis : the spread between the composite of 125 single-name CDS spreads

in the North America investment grade credit default swap index (CDX.NA.IG) and

the quoted spread on the CDX.NA.IG. The series is from the J.P. Morgan Markets

DataQuery.

� US Libor tenor basis : the spread in �xed rates between a 5-year interest rate swap

indexed to one-month US Libor and a 5-year interest rate swap indexed to three-month

US dollar Libor. The series is from the J.P. Morgan Markets DataQuery.

� Swap-Treasury spread : the spread between the 30-year US Libor interest swap rate

and the 30-year US Treasury yield. The series is from Bloomberg.

� Refco-Treasury spread : the spread between the yield on the 5-year resolution fund-

ing corporation strip (fully backed by the U.S. government) and the 5-year US Treasury

bond. The series is from Bloomberg.

� KfW-Bund spread : the spread between the yield on the 5-year euro-denominated

bonds issued by Kreditanstalt für Wiederaufbau (fully backed by the German govern-

ment) and the 5-year German bund yield. The series is from Bloomberg.

� TIPS-Treasury spread : the spread between the yield on the asset swap package

combining a 5-year Treasury bond and an in�ation swap and the yield on the 5-year

Treasury in�ation protected security (TIPS). The series is from Bloomberg.
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In Internet Appendix Table A31, we summarize the mean and standard deviation of

these near-arbitrages, together with the AUD-JPY spot cross-currency basis, by the pre-

GFC, GFC and post-GFC period.

H Estimating the SDF from Prices of Risk

Our hypothesized SDF (Equation (1)) postulates thatmt+1 = � t � 
r w
t+1 + � jx t+1 ;1j. Let

� = [ � r w ; � jx j ] be the price of risk on the two factors, the wealth portfolio return and the

magnitude of the cross-currency basis, respectively, and� be the variance-covariance matrix

between these two factors. We can estimate the SDF parameters as54

2

6
4




�

3

7
5 = � � 1

2

6
4

� r w

� jx j

3

7
5 :

The parameter � is proportional to the single regression coe�cient of the true SDF on

the two factors. It therefore can be estimated from the realized market risk premium on

the two factor's factor-mimicking portfolios. If we use the He et al. (2017) value-weighted

intermediary return on equity as the factor-mimicking portfolio for intermediary wealth

returns, and use the returns on the forward CIP trading strategy as a direct measure of the

risk premium on the cross-currency basis, then we can estimate� and, by extension, the

SDF parameters
 and � .

We estimate the price of risk on intermediary equity return from monthly excess returns

from January 1970 to August 2018, the longest panel of returns that we have. The average

monthly excess return is about0:59%, which implies an annual excess return of about7:3%.

54The signs in this equation are slightly non-standard. The factor in the SDF is�j x t +1 j, and the forward
CIP return is positive when this factor increases (i.e. the basis shrinks).

A.32



We estimate the price of risk on the forward CIP trading strategy from the Post-GFC sample.

Given the short sample, we use daily observations of the monthly returns on the 1M-forward

3M �Top-Six First PC� forward CIP trading strategy. The average monthly return is 4.6

basis points, which corresponds to an annual pro�t of 13.8 basis points on the notional.

To calculate the SDF parameters, we also need the variance-covariance between the two

factors. We estimate� using monthly returns on the intermediary equity and the 1M-forward

3M AUD-JPY forward CIP trading strategy in the Post-GFC period (July 2010 to December

2020). Together with estimates of� , we �nd an estimate of
 of -0.155 and an estimate of� of

247. While the estimate of a positive� is statistically signi�cant at conventional signi�cance

levels, the estimate of
 is imprecise, and we cannot reject that the true
 is greater than 1.

We summarize these results in Internet Appendix Table A32.

I Cross-Sectional Asset Pricing with HKM and AEM Factors

In Internet Appendix Tables A15, A16, A17, and A18, we run two-factor models involving

the Market and an intermediary-related factor (the HKM factor, the HKM intermediary

equity return, the AEM broker-dealer leverage factor, and the forward CIP return PC1,

respectively). The �rst three of these speci�cations do not include the forward CIP return,

and are therefore use betas estimated from the full data sample (including pre-GFC data).

We �nd (consistent with results in HKM) that the AEM factor helps price equities55 but it not

priced consistently across the other asset classes, and when pooling asset classes has a roughly

zero risk price. When pooling asset classes for the two HKM factors, we �nd coe�cient

estimates that are attenuated relative to the results of HKM (a result caused in part due

55Speci�cally, the AEM model has a relatively low mean average pricing error for the FF6 asset class,
after accounting for the di�erence between monthly and quarterly data speci�cations.
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to di�erences in the sample and in part due to di�erences in the asset class de�nitions).

As a result, the prices of the two HKM factors cannot be statistically distinguished from

zero; however, the point estimate for the risk price of the intermediary equity return exceeds

the directly estimates price of risk. These two results taken together suggest that our cross-

sectional analysis with the HKM factors lacks power, despite using the full sample of available

returns. In contrast, our results for the forward CIP return and the market factor (Table

A18) involve a price of risk for the forward CIP return that is consistent across asset classes

and statistically distinguishable from zero when pooling asset classes. We �nd again when

pooling across asset classes that we cannot reject our "H1" hypothesis. Relative to the HKM

factors, using the forward CIP return results in smaller pricing errors for options, CDS, and

commodities, but a higher pricing error for US bonds.

Internet Appendix Table A19 presents results that use the market, intermediary equity,

and forward CIP return factors. Our H1 hypothesis now requires that all three risk prices

be consistent with the mean excess returns of those tradable factors. We again are unable to

reject this hypothesis in our pooled speci�cation. Internet Appendix Table A20 presents a

versions of Table 8 that does not include the basis shock (i.e. a speci�cation found in HKM).

The point estimates for the price of intermediary equity risk are again generally higher than

our direct estimate of the intermediary equity risk premium. We interpret this result as again

suggesting that either the basis shock is captures something about intermediary wealth that

the equity return omits or that it captures an intertemporal hedging consideration that is

signi�cant in its own right.
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J Bayesian Test of Asset Pricing Models

In this Internet Appendix section we describe the Bayesian asset pricing methodology of

Barillas and Shanken (2018) and Chib et al. (2020).

Let M j be a candidate factor model andML j be the marginal likelihood ofM j . The

posterior probability of observing a model is

P(M j jData) = fML j � P(M j )g �

(
X

i

ML i � P(M i )

) � 1

;

where the denominator sums across all models under consideration.

Which models are compared? Consider a set ofn factors, at most one of which is

non-tradable. If there is a non-tradable factor, treat it is a �baseline factor� present in

all speci�cations. The remaining tradable factors could be included in the factor model

(f ) or excluded (f � ), in which case they are treated as test assets. For example, in the

�rst speci�cation in Table 7, the factors are the market, Fwd CIP, and intermediary equity

returns. The exercise compares models with one, two, or all three of these factors.

For each modelM j , the marginal likelihood is

ML j = P(Rjf ) =
Z Z

P(Rjf; �; �; �) P(� j�; �) P(�; �) d�d�d � ;

whereR is the excess returns of the test assets (f � ), f are the factors included in modelM j ,

and �; � , and � are from

Rt = � + �f t + � � t :
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Here, the regression residuals� t are assumed to be IID across time and normally distributed.

Barillas and Shanken (2018) suggest the prior that all models are equally likely ex-ante

(P(M j ) = P(M j 0)), and construct a priorP(� j�; �) based on bounds for Sharpe ratios. Using

these priors and an appropriately constructed improper prior for the nuisance parameters

P(�; �) (Chib et al. (2020)), we can compute the relative likelihood of each candidate model

M j , P(M j jData). We implement this procedure using the software of Chib et al. (2020).

These probabilities depend primarily on the Sharpe ratios of the excluded factorsf � given

the factor model(f 0; f ). If model M j with only f is su�cient, then � � from f �
t = � � + � � f + � �

should be 0. In other words, the marginal likelihood of a model is high when the model is

correctly speci�ed relative to the set of available potential factors.

K Cross-Sectional Asset Pricing Details

In this Internet Appendix section, we provide more details about the cross-sectional asset

pricing exercise of Section 5. We begin by describing our test asset portfolios, then discuss

the di�erences between our exercise and He et al. (2017) (HKM).

Internet Appendix Tables A15, A16, and A20 show cross-sectional asset pricing results

for our test asset classes with the HKM factors. These tables can be compared (noting the

di�erences in asset class de�nitions and sample) with Tables 14 and 17 of He et al. (2017).

K.1 Factors and Test Assets

As discussed in the main text, our choice of test assets is inspired by HKM, but for various

reasons the exact portfolios we use in each asset class di�er slightly from their counterparts

in HKM. Below, we describe the data used for each asset class. We truncate all of our series

at the end of December 2020.
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The Market and the Risk-Free Rate

The equity return we use is the Market factor provided on Ken French's website (originally

from CRSP). We also use, for most of our sample, the 1-month t-bill rate provided on

Ken French's website (and due to Ibbotson and Associates, Inc.). These are the same data

sources used by HKM. However, as discussed on Ken French's website, the Market return

was changed in October 2012 and as a result there are some di�erences between our series

and the one originally used by HKM.

We also adjust the risk-free rate to use one-month OIS swap rates instead of 1-month

t-bill rates once the data becomes available. We make this adjustment to be consistent with

the risk-free rates we used to compute the cross-currency basis and forward CIP returns.

This adjustment has a minimal impact on our results.

The HKM Intermediary Wealth Returns

In our equity-return only speci�cation (Table 8), we use as an equity return the "inter-

mediary value-weighted investment return" of HKM, obtained from Asaf Manela's website.

When we use the original HKM speci�cation, perhaps augmented with our basis shock (In-

ternet Appendix Tables A15 and A21), we use our market return described above and the

"intermediary capital risk factor" of HKM, obtained from Asaf Manela's website.

The AEM Leverage Constraint

We follow the Adrian et al. (2014) and calculate the AEM factor as the seasonally ad-

justed quarterly change in the log of the broker-dealers' leverage ratio. The leverage ratio

is calculated as the ratio of the book equity over total assets of the broker-dealer sector

from Flow of Funds, or BOGZ1FL664090005Q (Assets)/(BOGZ1FL664090005Q (Assets) -
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BOGZ1FL664190005Q (Total Liabilities)). The seasonal adjustment is done by removing

�xed-e�ects associated with the the quarterly dummies using a backward-looking rolling

window beginning in 1965Q3. Our constructed series is 99% correlated with the original

series used in Adrian et al. (2014) for the overlapping sample period.

Equities (FF6)

Our test equity portfolios are the monthly return series of the "6 Portfolios Formed on Size

and Book-to-Market (2x3)" available on Ken French's website, building on Fama and French

(1993). The series begins in July 1926.

HKM use the 25 portfolio version of these series, with data from 1970 onwards. We use

six portfolios instead of twenty �ve to mitigate the possibility of spurious results arising from

the presence of large bank stocks on both sides of the regression. This issue causes, in our

post-crisis sample, an unusually strong correlation between the HKM intermediary value-

weighted investment return and one particular Size-by-Value 25 portfolio (Large Value).

Using only six portfolios instead of twenty �ve allows us to capture the factor structure of

equity returns documented by Fama and French (1993) while mitigating this issue.

There also appear to be a variety of small di�erences between the returns we obtained

from Ken French's website in 2021 and the returns HKM obtained in 2012. Many of these

di�erences are small enough that they can be attributed to rounding, but some are not. Ken

French's website does mention a variety of changes in CRSP between 2012 and the present,

but none seem directly applicable to the size-and-value portfolios.
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US Bonds (US)

Our U.S. bond portfolios include both government and corporate bonds. The government

bonds are the �ve CRSP "Fama Maturity Portfolios" de�ned in twelve-month intervals, plus

the two longer-maturity portfolios (60-120 months and >120 months). We drop the shortest

maturity portfolio, because of the similarity between its returns and the risk-free rate, and

end up with six government bond portfolios. The corporate bonds are �ve Bloomberg cor-

porate bond indices, which correspond to US corporate bonds with ratings of AAA, AA, A,

B, and high yield.56

To include the returns for a particular month, we require that the returns for all six

government bond maturity buckets and all �ve corporate bond indices be available. As a

result, our data starts in September 1988. Four of our government portfolios are groupings of

the Fama bond portfolios studied by HKM, who use the six-month interval portfolios and do

not exclude the shortest maturities or include the longer maturity portfolios. Our corporate

bond indices are di�erent from the ones studied by HKM, and were chosen because they are

readily available.

Sovereign Bonds (Sov)

Our sovereign bond portfolio construction follows the procedure of Borri and Verdelhan

(2015). Those authors consider all countries in the JP Morgan EMBI index, and sort bonds

into six portfolios. They �rst divide countries into two groups, depending on whether their

bonds have a low or high beta to US equity market returns, and then within each of these

groups split bonds into three sub-groups based on their S&P rating. HKM use exactly the

56The tickers are LU3ATRUU Index, LU2ATRUU Index, LU1ATRUU Index, LUBATRUU Index, and
LF98TRUU Index.
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data of Borri and Verdelhan (2015), as those two papers are roughly contemporaneous.

We implement this procedure with updated data. However, several countries have been

dropped from the EMBI index, and do not have returns available for the post-crisis period.

These countries are omitted from our entire analysis, and as a result there is an imperfect

(80%) correlation between our portfolio returns and the original Borri and Verdelhan (2015)

returns.

Foreign Exchange Portfolios (FX)

We use the 11 forward-premium-sorted portfolios of Lustig et al. (2011). These portfolios

consist of up to 34 currencies on each date. Six these portfolios contain all currencies,

sorted by forward premia. Five contain only developed-country currencies, sorted by forward

premia. These returns series are updated regularly and provided to us by Adrien Verdelhan.

In contrast, HKM use six portfolios sorted by forward premia from Menkho� et al. (2012)

and six portfolios sorted by interest rate di�erential from Lettau et al. (2014).57 Because

covered interest parity holds for most of the sample, these two groups of portfolios should be

essentially identical. However, the two papers di�er on data sources and samples (Menkho�

et al. (2012) have up to 48 currencies from 1983 to 2009, Lettau et al. (2014) have up to 53

from 1974 to 2010), and consequently the two sets of portfolios to do not exactly span each

other.

Equity Options Portfolios (Opt)

We construct equity options portfolios using the procedure of Constantinides et al. (2013)

to generate portfolios of puts and calls sorted by moneyness and maturity. We form twelve

57The published version of Menkho� et al. (2012) describes only �ve portfolios, and two other portfolios
that are linear combinations of the �ve.
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portfolios (six of calls and six of puts), for two di�erent maturities (30-day and 90-day), and

three di�erent levels of moneyness (in-, at-, and out-of-the-money). The underlying data

source is OptionMetrics via WRDS. A previous version of this paper also used 60-day expiry

options; omitting them has a minimal impact on the results.

The OptionMetrics data needs to be cleaned extensively, as discussed at length in Con-

stantinides et al. (2013). We follow their procedure as closely as feasible and are able to

construct portfolios whose returns closely track the portfolios of Constantinides et al. (2013)

in their original sample.

HKM use 18 portfolios based on the original portfolios of Constantinides et al. (2013).

However, they use nine di�erent moneyness levels for calls and puts, collapsing the three

di�erent maturities into a single portfolio for each moneyness. We have found that collapsing

into moneyness-by-maturity buckets reduces the correlation between the return series.

We follow Constantinides et al. (2013) in "leverage-adjusting" the option portfolio returns

by mixing the original return with some amount of the risk-free return to ensure that the

Black-Scholes-implied beta to the market of each portfolio is one. The advantage of this

approach is that the return distribution of the options is closer to normal. The disadvantage

of this approach is that, by construction, all of the option portfolios have a beta to the

Market factor that is close to one. This can lead to weak identi�cation, as can be seen in

the KZ p-value of column (4) in Internet Appendix Table A19. In the pooled speci�cation

(column (9) of that table), other assets help identify the price of Market risk. In our main

speci�cation (Table 8), the Market is not included as a factor, and this particular weak

identi�cation problem does not arise.
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Credit Default Swaps (CDS)

Our CDS returns series consists of returns for �ve major CDS indices. The indices are

CDX.NA.IG (North American investment grade), CDX.NA.HY (North American high yield),

CDX.NA.XO (North American cross-over, between investment grade and high-yield), CDX.EM

(emerging markets), and iTraxx Europe. These indices are available from Markit and via

Bloomberg, with all �ve series having data from July 2004 onwards.

In contrast, HKM use portfolios of single name CDS returns constructed from Markit data

on single-name CDS. We obtained this data and attempted to construct similar portfolios,

but were unable to approximately match the return series used by HKM. Using the index

returns instead of the single name returns reduces the likelihood of errors in our calculations

and should make it easier for other researchers to replicate our results.

Commodity Futures (Comm)

We use six commodity return indices constructed by Bloomberg, covering energy, grains,

precious metals, industrial metals, livestock, and �softs�. We obtain the total return index

for each commodity index from Bloomberg. These indices aggregate the returns of several

short-maturity futures for each commodity. All of the index returns are available starting in

February 1991.

HKM instead build on the work of Yang (2013) and use twenty three commodities. HKM

also use data from the Commodities Research Bureau, which has the advantage of going back

further in time, and use a slightly di�erent method of aggregating the various short-maturity

futures contract returns into a single index for each commodity.

We use the Bloomberg commodity indices for two reasons. First, to facilitate pooling

across assets, it is convenient to have a smaller number of test assets in each asset class (to
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avoid N close to T in the pooled speci�cation). Second, Bloomberg indices are designed to

ensure each of the commodities included in the index is su�ciently liquid and frequently

traded. Several of the commodities in the original HKM data set (e.g. oats, rice, palladium)

are not liquid enough to be included in the Bloomberg indices.

An earlier version of this paper instead followed the HKM approach. The resulting point

estimates for the two groups of commodities are in some cases quite di�erent; however, for

both the six indices and twenty three commodities, the cross-sectional results are poorly

identi�ed (high KZ p-values) and have large standard errors (which, due to the lack of

identi�cation, likely understate the true degree of uncertainty).

OIS and IBOR Forward CIP Returns (FwdCIP)

We use OIS and IBOR forward CIP returns in six currencies (CAD, GBP, EUR, CHF, AUD,

JPY) vs. USD as test assets. We exclude the 3m OIS AUD and JPY, which we used to

construct the Classic Carry forward CIP returns and are highly correlated with the �rst PC

of the forward CIP returns, our proposed factor in the SDF. Our OIS returns include both

1-month forward 1-month and 1-month forward 3-month returns, whereas the IBOR returns

are restricted to 3-month tenors due a lack of available data.

For all of these assets, we study as an excess return

xc
t;h;� � xc

t+ h;0;� ;

which is the pro�t per dollar notional, normalized by the duration.

We construct the OIS forward CIP returns as described in the text. IBOR forward CIP

returns are constructed in an essentially identical fashion, using 3M spot IBOR rates and
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FRA agreements with 3M IBOR as the underlying rate. For all returns, we consider only

the post-crisis period.

We exclude CHF OIS returns due to problems with the OIS data (and hence use only

IBOR for CHF), and exclude CAD IBOR returns due to missing data (and hence use only

OIS returns for CAD). As a result, we combine five IBOR-based forward CIP returns with

five OIS-based one-month tenor and three OIS-based three-month tenor forward CIP returns,

for a total of thirteen test assets.

K.2 Estimation and Standard Errors

Our analysis is the GMM version of a traditional two-pass regression to estimate the price of

various risk-factors, as described in chapter 12 of Cochrane (2009). Our point estimate come

from an exactly identified single-step GMM estimation procedure, as described on pages

241-243 of Cochrane (2009). We use a Newey-West kernel with a twelve-month bandwidth

(Newey and West (1987)) to construct standard errors that are robust to heteroskedasticity

and auto-correlation.

The one key difference between our procedure and the textbook procedure is that we

allow the samples for the estimation of the betas and the means to differ.58 To implement

this, we introduce as parameters in our GMM equations a mean-return parameter for each

asset and an extra equation for each asset stating that the difference of the mean parameter

and the asset excess return is zero in expectation. We then write our cross-sectional asset

pricing equation (12) entirely as a function of parameters, with no data. These changes, and

allowing our GMM estimator to use different samples for different equations, implement the
58For this reason, we do not use an automatic bandwidth selection procedure for our standard errors. We

have found that the standard errors are insensitive to the bandwidth choice, likely because returns exhibit
small amounts of auto-correlation.
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desired outcome that the mean and beta samples can differ.
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