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Abstract

We study intermediaries’ limited risk-bearing capacity and its implications for
asset prices. We introduce a new measure, “intermediary elasticity”, defined as
the price response to a marginal unit of risk induced by trading demand shocks.
We apply our framework to the foreign exchange (FX) market and find that just
three traded risk factors can jointly account for 90% of the non-diversifiable risks
borne by intermediaries when accommodating FX trading flows. These three
traded risk factors resemble the Dollar, the Carry, and the Euro-Yen, and reveal
that intermediaries accumulated $0.8 trillion in exposure to the Carry over the
last decade. Through instrumental variable analysis, we show that intermediaries
raise prices by 5 to 30 bps in response to $1 billion net trading demand shock to
these factors. We use our estimated FX-factor elasticity to quantify the cross-
elasticity of a panel of currencies and across 7 major asset classes.
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1 Introduction

A growing literature offers evidence that financial intermediaries are central to asset pricing

(for a survey, see He and Krishnamurthy (2017)). Liquidity, regulation, and other con-

straints facing financial intermediaries lead to limited risk-bearing capacity (e.g., Kondor

and Vayanos (2019), Du, Hébert, and Huber (2022)). As a result, in contrast to the tradi-

tional asset pricing paradigm, trading demand can affect asset prices (e.g., Du and Huber

(2024)). In this paper, we study intermediaries’ risk-bearing capacity by first identifying risks

that trading demand shocks induce and then quantifying intermediaries’ price sensitivity to

these risks. Our results underscore the role that intermediaries play in driving cross-asset

pricing dynamics.

Central to our investigation is the concept of “intermediary inverse elasticity”, which we

define as the price response to a marginal unit of risk induced by trading demand shocks.

For simplicity, we abbreviate it as “intermediary elasticity.”1 Our concept follows directly

from the classic asset pricing framework that views risk premium as the product of the

price of risk and the quantity of risk. An elasticity concept that is relevant to asset pricing

should therefore be defined with respect to the quantity of risk. Intermediary elasticity thus

contrasts with the “(inverse) elasticity of demand” in industrial organization (IO), which

measures price responses due to changes in the quantity of a good demanded. Our concept

has intuitive interpretations. If intermediary elasticity is zero, then intermediaries are able

to perfectly share risks from accommodating trading demand shocks and there is no limited

risk-bearing capacity. Conversely, the larger the intermediary elasticity, the more limited

the risk-bearing capacity.
1“Price multiplier” is another term that is sometimes used to refer to inverse elasticity, e.g., Gabaix and

Koijen (2021).
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To quantify intermediary elasticity, we develop a novel technique that extends the classic

arbitrage pricing theory to identifying risks from trading. The classic theory builds on diver-

sification of risk, whereby only common variations in asset returns constitute risk factors that

explain unconditional expected returns (Markowitz (1952) and Ross (1976)). In this spirit,

we argue that should trading demand shocks affect asset prices, they do so by altering the

amount of non-diversifiable risks that intermediaries must bear. Consider an intermediary

taking customer buy orders of the same size for two assets. If the two assets’ returns are

perfectly negatively correlated, the buy orders offset each other, and the intermediary bears

no risk. Conversely, if the two assets are positively correlated, the intermediary is left with

some non-diversifiable risk and requires compensation. The effect of trading demand shocks

on asset prices thus depends on intermediary elasticity to trading-induced non-diversifiable

risks. As in the canonical theory, traded non-diversifiable risks give rise to traded risk factors.

Empirically, such factors can be identified through a modified principal component analysis

(PCA) that incorporates both customer trading and asset return data. Our approach con-

trasts with the standard PCA done using asset returns only, which uncovers unconditional

risk factors but is silent on whether these risk factors are affected by trading.

We study intermediaries’ risk-bearing capacity in the foreign exchange (FX) market,

where we obtain daily trading data in FX spot, FX forward, and FX swap from the CLS

Group, the largest single source of FX executed data available to the market. We first show

that FX trading-induced risks follow a strong factor structure: the three most important

traded FX risk factors (“traded FX factors”) jointly account for 90% of the non-diversifiable

risks that intermediaries bear when accommodating FX trading flows. Decomposing ob-

served trading flows to these three traded FX factors, which resemble the Dollar, the Carry,
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and the Euro-Yen,2 provides a method for measuring intermediaries’ otherwise unobserved

net risk positions from trading. We then use instrumental variables to estimate the inter-

mediary elasticity of the three traded FX factors. The factor-specific intermediary elasticity

allows us to recover the cross-elasticity between the whole panel of currencies, a first in the

literature. Finally, we show that returns in CDS, commodities, corporate bonds, equities,

options, and U.S. Treasury bonds can also be explained by the three traded FX risk factors,

and we apply the estimated FX-factor elasticity to obtain novel estimates of cross-elasticity

between these asset classes.

We start by identifying FX risk factors that are most affected by trading demand shocks

in 16 non-U.S. dollar (USD) currencies. We employ a modified PCA procedure on a weekly

panel of trading flows and returns to recover risk factors most affected by customer trading.

By accounting for variations in trading and returns simultaneously, our procedure contrasts

with the standard PCA found in the literature. A standard PCA on FX trading simply points

to portfolios with the most traded currencies because it neglects the covariance in currency

returns. A standard PCA on FX return, on the other hand, can surface unconditional risk

factors priced in FX (Lustig, Roussanov, and Verdelhan (2011)), but is silent on whether

these factors are traded.3 If there is no trading, then there is also no role for limited risk-

bearing capacity at the margin. Remarkably, we find that the three most important traded

FX risk factors are the Dollar, the Carry, and the Euro-Yen, where the first two are also

the most important unconditional risk factors. As these factors capture the non-diversifiable

risks in FX trading, net flows into these factors measure the intermediaries’ risk exposure
2The Euro-Yen factor is constructed by longing the Euro (EUR) and shorting the Japanese yen (JPY),

while being neutral on all other currencies.
3In fact, the risk premium of these unconditional risk factors is typically microfounded on consumption-

based models with stochastic discount factors (SDFs) that do not rely on investor trading (Lustig and
Verdelhan (2007)).
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from FX trading. For example, we find that intermediaries accumulated $0.8 trillion in

exposure to the Carry between 2012 and 2023.

Having identified the traded FX factors, we proceed to estimate the intermediary elastic-

ity of these factors. By construction, our traded FX factors have uncorrelated returns and

uncorrelated flows, meaning that both intermediaries and customers view these factors as

uncorrelated; we thus estimate the intermediary elasticity factor-by-factor without worrying

about cross-factor substitution. At the same time, we must instrument for trading demand

shocks in each of the factors because we are interested in intermediaries’ price response to

trading that is not motivated by changes in fundamentals (e.g., the arrival of new informa-

tion). We employ as instrumental variables the announcements of the offering amount at

upcoming sovereign bond auctions in the U.S., Australia, Canada, the U.K., Japan, Italy,

France, and Germany. These sovereign auctions often attract foreign investors who need

to convert currencies to participate, making the instruments relevant. By using offering

amounts at auctions whose size is typically dictated by fiscal needs, we have instruments

that are plausibly exogenous and meet the exclusion restriction. We estimate that the in-

termediaries raise the factor price by about 1% in response to net trading demand shocks

of approximately $20 billion in the Dollar, $11 billion in the Carry, and $3.5 billion in the

Euro-Yen. Compared to the estimated price response to trading demand shocks in the aggre-

gate U.S. equities market, intermediaries’ price response to shocks to the traded FX factors

is high.4 Viewed through the lens of our model, the high intermediary elasticity in the FX

markets reflects intermediaries’ greater aversion to liquidity provision. This aversion is espe-

cially pronounced for less well-known factors like Euro-Yen, and could arise due to limited
4Gabaix and Koijen (2021) find that a 1% higher trading demand shock to the entire U.S. stock market

increases price by 5%. The average market capitalization between 2012 and 2022 is about $31.7 trillion. To
raise the stock market price by 1% over our sample period therefore requires about $63 billion.
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FX arbitrage capital.

The estimated intermediary elasticity allows us to compute the cross-(inverse) elasticity

between any pair of currencies. We use “cross-elasticity” to measure the impact of a trading

demand shock to currency A on the price of currency B, while holding the trading demand

shocks of all other currencies constant. Estimating such cross-elasticities for a whole panel

of currencies can be challenging, as currencies are substitutable and trading demand shocks

are likely correlated across currencies. Our insight lies in mapping the cross-elasticity of

currencies to trading’s impact on common risk factors. When intermediaries accommodate

trading demand shocks to currency A, they bear additional non-diversifiable factor-level

risks. These risks influence factor prices through the estimated intermediary elasticity and

ultimately affect the price of currency B via the law of one price. We find that the own-

elasticity to $1 billion of inflow ranges from 5 bps to 16 bps for six commonly traded advanced

economy currencies.5 More interestingly, we find large cross-elasticity between AUD and

CAD because these two currencies are traded in the same direction in all three traded FX

factors. In contrast, the cross-elasticity between JPY and either AUD or CAD is small

because JPY and these two currencies are on opposite sides of the Carry trade and hedge

each other in exposure to the Carry factor. In IO, such phenomena are typically referred

to as complementarity. Accordingly, although EUR and JPY are both low interest-rate

currencies, our estimates suggest that they have only modest cross-elasticity because they

“complement” each other in reducing the intermediary’s exposure to the Euro-Yen factor.

Finally, we use the traded FX factors to inform cross-elasticity between asset classes.

We show that returns in six other asset classes load on the traded FX factors. Conse-

quently, intermediaries’ limited risk-bearing capacity means that trading demand shocks
5The six currencies are the Australian dollar (AUD), the Canadian dollar, the Swiss franc (CHF), the

Euro (EUR), the British pound (GBP), and the Japanese yen (JPY).
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originating in FX can affect prices in other asset classes, as these shocks generate addi-

tional non-diversifiable trading risks and alter the price of traded FX factors. Similarly, a

trading demand shock in, say, corporate bonds also exposes intermediaries to incremental

non-diversifiable FX risks. Such risks change the price of the traded FX factors, which then

affect corporate bonds’ own price and the price in other asset classes through common expo-

sure to the traded FX factors. For own elasticity, we find that trading demand shocks move

the price the least in U.S. Treasury bonds, corroborating the observation that the Treasurys

market is deep and liquid. U.S. Treasury bonds also stand out as the only asset class that

has negative cross-elasticity with other assets. For example, a $1 billion trading demand

shock to Treasurys depresses the price of corporate bonds by 0.2 bps.

We caution that our estimates only capture the cross-elasticity channeled through the

three traded FX factors. These factors explain about 80% of the unconditional return vari-

ation for FX currencies and about 30% of the unconditional return variation for non-FX

assets. Our estimates thus miss potential cross-elasticity arising due to common exposure to

factors other than the three traded FX factors. Nevertheless, our estimates highlight that

even though intermediaries are active in several markets, these markets do not necessarily

move in tandem. Rather, understanding how asset markets are interconnected requires un-

derstanding different assets’ exposure to common risk factors and the intermediary elasticity

of these factors.

More generally, this paper advances the literature on intermediary-based asset pricing

on two fronts. First, we present a novel way to measure the impact of intermediaries’ risk-

bearing capacity on asset prices. Constraints such as regulation, liquidity, and segmentation,

have all been proposed to limit intermediaries’ risk-bearing capacity (e.g., Gabaix and Mag-

giori (2015), He and Krishnamurthy (2017), Kondor and Vayanos (2019)). Empirical evi-
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dence points to these constraints being priced (e.g., Du, Tepper, and Verdelhan (2018), Du,

Hébert, and Huber (2022), Duffie, Fleming, Keane, Nelson, Shachar, and Van Tassel (2023))

but offers limited insight into how these constraints matter at the margin. We extend the

portfolio theories of Markowitz (1952) and Ross (1976) to a representative intermediary (He

and Krishnamurthy (2013)) to show that trading-induced non-diversifiable risks are priced

by the intermediary at the margin. We propose intermediary elasticity as a measure for

intermediary’s risk-bearing capacity, and we estimate the intermediary elasticity of traded

FX factors to quantify the impact of trading demand shocks’ on price. Second, we illus-

trate the nuanced cross-asset and cross-market pricing dynamics in intermediated financial

products. Intermediaries have been shown to matter for prices of many asset classes (e.g.,

Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), Haddad and Muir (2021)).

Because intermediaries are simultaneously active in many markets, trading demand shocks

in one market could propagate to other markets. We provide the first set of cross-market

elasticity estimates by examining different asset markets’ exposure to a common set of traded

risk factors. Understanding cross-product and cross-market dynamics through exposure to

common factors is a framework that can be broadly applied. For example, tying the tax

burden of financial transactions to risk exposure rather than to specific transactions is likely

more effective (Tobin (1978)).

Many findings in this paper relate directly to the literature on exchange rate determi-

nation. In particular, FX trading flows affect exchange rate. Flows matter in part because

they convey information (e.g., Evans and Lyons (2002), Pasquariello (2007)), but unin-

formed flows also move exchange rates (Froot and Ramadorai (2008)). We emphasize that

uninformed flows matter because these trading demand shocks push intermediaries against

their risk-bearing capacity. Exchange rates can also affect and be affected by asset demands
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in other markets: Camanho, Hau, and Rey (2022) examine the connection to the equity

market through portfolio rebalancing, and Liao and Zhang (2020), Jiang, Krishnamurthy,

and Lustig (2021), and Gourinchas, Ray, and Vayanos (2024), among others, study the re-

lationship with the bond markets due to hedging, safe asset demand, and preferred-habitat

investors. The distinguishing feature of our paper is that we let the data inform the specific

risk factors that link FX trading with other asset markets. In fact, we find that the risk

factors affected by FX trading demand shocks are the same as those shown to price the un-

conditional exchange rate returns (Lustig, Roussanov, and Verdelhan (2011)). By showing

that these risk factors are traded, we enrich the understanding of why these risks are priced

(e.g., Bansal and Dahlquist (2000), Lustig and Verdelhan (2007), Ready, Roussanov, and

Ward (2017)).

Finally, this paper adds to the growing literature that connects trading demand with asset

prices. Early empirical works such as Coval and Stafford (2007) and Lou (2012) highlight

the importance of demand on asset prices. More recently, several papers document reduced-

form evidence that prices respond to trading demand because of perceived risks (e.g., Li and

Lin (2022), Albuquerque, Cardoso-Costa, and Faias (2024)). We similarly focus on risk as

the channel through which trading affects prices, but we use a theory-based procedure to

identify the pertinent risk factors and translate the elasticity of risk factors to the elasticity

of underlying assets. Our focus on trading-induced risks sets our “intermediary elasticity”

apart from the IO-inspired price elasticity with respect to traded securities (e.g., Koijen and

Yogo (2019) for the stock market, Koijen and Yogo (2020) and Jiang, Richmond, and Zhang

(2024) for exchange rates, Bretscher, Schmid, Sen, and Sharma (2022) for corporate bonds).

Our approach in part derives from An (2023) and is related to An, Su, and Wang (2024), who

use a factor model to estimate price impacts in the equity markets. In emphasizing factor
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exposure as the driver of asset substitution, we complement recent papers that rationalize

inelastic demand of individual asset through cross-substitution (e.g., Chaudhary, Fu, and

Li (2023), Davis, Kargar, and Li (2023), Fuchs, Fukuda, and Neuhann (2023)). Indeed,

we show that intermediaries’ limited risk-bearing capacity leads to large price responses to

non-diversifiable risks at the factor level, which in turn drives the inelasticity of individual

securities and asset markets.

In the next section, we lay out our theoretical framework. We introduce the various

sources of data we use in Section 3 and proceed to recover the traded FX factors in Section

4. We employ an instrumental variable approach to estimate the intermediary elasticity of

the traded FX factors in Section 5, and apply these estimates to recover the cross-elasticity

between currency pairs. We explore the connection between the FX market and six other

asset classes in Section 6, and derive cross-elasticity between asset classes. We conclude in

Section 7.

2 Theoretical Framework

This section presents the conceptual framework of our study, the construction of traded

risk factors, and the solution for intermediary elasticity. We also discuss potential issues in

bridging the model to empirical observations.

2.1 Model Setup and Conceptual Framework

There are three periods: t = 0, t = 0+, and t = 1. The trading demand shock occurs from

t = 0 to t = 0+. We empirically analyze these shocks at the weekly frequency. Time t = 1

represents the long term, where the currency price is no longer affected by the short-term

trading demand shock. In reality, reaching this stage may take months.
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We have N + 1 currencies, where the last currency is the numeraire currency. The gross

risk-free rate of currency n from t = 0 to t = 1 is a constant RF,n. The time-0 price of

one unit of currency n in the numeraire currency is denoted as Pn, and the time-1 price

of currency n is denoted as Xn. These X1, X2, . . . , XN are jointly normally distributed.

Consider the return of borrowing one unit of the numeraire currency at its risk-free rate,

exchanging it to currency n at time 0, investing at currency n’s risk-free rate between time

0 and 1, and exchanging back to the numeraire currency at time 1. This return is given by

RF,nXn/Pn −RF,N+1, and we stack it as an N × 1 vector:

R = (RF,1X1/P1 −RF,N+1, RF,2X2/P2 −RF,N+1, . . . , RF,NXN/PN −RF,N+1)
⊤. (1)

We assume that there are no redundant currencies such that the matrix var(R) has full

rank.6

Customers can buy or sell any pair of the N + 1 currencies between time 0 to 0+. These

trading demand shocks are accommodated by a unit mass of representative intermediaries,

who set the trading price competitively. These trading demand shocks are uninformed and

do not impact the long-term price Xn at time 1. Hence, if intermediaries had unlimited

risk-bearing capacity, the asset price Pn at time 0+ would not be affected by the trading

demand shocks. However, intermediaries may not freely bear all risks.

As in the classic asset pricing theory, intermediaries in our model require compensation

for any non-diversifiable risks, including those resulting from accommodating customers’

trading demand shocks. The key idea here is that intermediaries can diversify risks not

only within the same currency but also across different currencies. Consider two customers

trading with an intermediary (e.g., a dealer), where one customer is buying and the other is
6Throughout the paper, we use bold font to denote matrices and vectors.
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selling. In the simplest case, the two customers are buying and selling the same currency,

so the intermediary can easily offset the risks. However, even if the customers are trading

different currencies, as long as the returns of these trades are not perfectly correlated, the

intermediary can still offset some risks. Just as in the classic theory, diversification across

currencies requires the intermediaries to consider portfolios of currencies (i.e., risk factors).

Once the trading demand shocks from different currencies are aggregated, the remaining

risks are non-diversifiable and the intermediaries require price compensation for bearing

such risks. Hence, we aim to find the risk factors that represent the largest amount of non-

diversifiable trading risks; these traded risk factors capture the most important shocks in

the cross-section. Section 2.2 shows how to achieve this. Then, in Section 2.3, we compute

the price equilibrium at the factor level to determine the intermediary elasticity of these

non-diversifiable trading risks. Finally, as these non-diversifiable trading risks influence

factor prices, individual currency prices must also adjust to maintain the law of one price in

the cross-section; Section 2.4 completes the analysis by computing cross-elasticity, whereby

trading demand shocks to one currency generate factor-level non-diversifiable risks, thus

affecting factor prices and, in turn, the price of other currencies.

In what follows, we use the U.S. dollar (USD) as the numeraire currency and decompose

all trades into trades against USD. In Appendix A.2, we prove that the construction of

traded risk factors remains invariant to the choice of the numeraire currency. Accordingly,

if a customer buys currency n by selling currency m, we record it as a positive trading

demand shock for currency n from USD and a negative trading demand shock for currency

m from USD.7 Consequently, the trading demand shocks between the N + 1 currencies can
7Triangular arbitrage implies that the time-0 exchange rate between currency n and currency m is

Pn/Pm. Hence, if a customer buys fn,m units of currency n by selling fn,mPn/Pm units of currency m, we
can decompose it into two trades against the USD. First, the customer buys $fn,mPn of currency n and sells
$fn,mPn of USD. Second, the customer sells $fn,mPn of currency m and buys $fn,mPn of USD.
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be represented as an N ×1 vector f = (f1, f2, . . . , fN)
⊤, where fn is the net customer buying

demand for currency n against USD.

2.2 Factor Construction

In this section, we construct the traded risk factors most affected by trading demand shocks

by using a modified PCA on both customer trading and asset return data.

To fix idea, we first review how the standard PCA on asset returns alone implements

the classic Ross (1976) Arbitrage Pricing Theory (APT) logic. The goal is to find a few

factors that can be used to model the unconditional expected returns in the cross-section.

The standard PCA procedure identifies these factors as those that maximally explain the

variance of the (unconditional) returns. Specifically, the first factor is defined by a vector

of N -currency portfolio weights b1 = (b1,1, b2,1, . . . , bN,1)
⊤ that maximizes the variance of

the factor return: var(b⊤
1 R). The second factor b2, conditional on being uncorrelated with

the first factor, i.e., cov(b⊤
1 R,b⊤

2 R) = 0, again aims to maximize the variance of the factor

return: var(b⊤
2 R), and so on.

We want to study trading-induced risks that intermediaries bear at the margin. Thus,

similar to the APT, we aim to identify a few factors that maximally explain the risks induced

by the trading demand shock f = (f1, f2, . . . , fN)
⊤ and then use these factors to model how f

impacts currency prices in the cross-section. For any given factor b1, currency n loads on the

factor with a beta βn,1 = cov(Rn,b
⊤
1 R)/var(b⊤

1 R). When there is a currency-level trading

demand shock, fn, that the intermediary must accommodate, the intermediary effectively

bears a factor-level trading demand shock of size fnβn,1, along with other risks uncorrelated

with the factor. Given that there are N currencies, intermediaries can offset the factor-

level trading demand shock across different currencies, leaving a non-diversifiable factor-level
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shock of amount8

q1 =
N∑

n=1

fnβn,1. (2)

Note that for any given factor (as defined by the portfolio weights b1), the factor-level trading

demand shock q1 varies in proportion to the currency-level trading demand shock fn. The

relationship between q1 and fn depends on the factor being considered, as varying b1 changes

the beta βn,1 of the same currency to the factor. Because our goal is to maximally explain

the trading-induced risks using a few factors, we construct the first factor b1 to maximize

the variation of trading demand shock q1 multiplied by the factor’s return variance,9

max
b1

var(q1)var(b⊤
1 R). (3)

We then construct the second factor b2 by requiring that the second factor has an un-

correlated return with the first and that the second factor maximizes the variation of q2

multiplied by the return variance,

max
b2

var(q2)var(b⊤
2 R) (4)

s.t. cov(b⊤
1 R,b⊤

2 R) = 0,

where q2 =
∑N

n=1 fnβn,2, with the beta βn,2 = cov(Rn,b
⊤
2 R)/var(b⊤

2 R).10

Such a sequential maximization procedure bears a resemblance to the standard PCA.

Because we seek to maximally explain trading-induced risks using a few factors, and these
8Our model assumes a representative intermediary who accommodates all customer trades. In practice,

such netting across currencies could also occur through interdealer trading.
9Note that scaling b1 does not affect the objective function. If b1 doubles, then q1 halves according to

(2), and b⊤
1 R also doubles. Empirically, we choose a convenient scaling for economic interpretation.

10Because the returns of different factors are uncorrelated by construction, the univariate beta defined
here is equivalent to the multivariate beta.
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risks depend on both currency-level trading demand shocks and currency returns, our con-

struction is effectively a modified PCA on both trading and returns data. Appendix A.1

provides details on solving for these factors through eigenvalue decomposition. Additionally,

we prove that our constructed risk factors also have uncorrelated trading demand shocks,

i.e., cov(qk, qj) = 0 for k ̸= j. Shocks to different qk can thus be interpreted as uncorrelated

shocks to uncorrelated risk factors.

2.3 Intermediary Elasticity

Having identified the traded risk factors that are most affected by trading demand shocks,

we now determine the intermediary elasticity of each factor. We assume that there is a

unit mass of intermediaries who have CARA preference. Because the intermediaries may

face factor-specific frictions in accommodating risks, they have possibly factor-specific risk-

aversion, denoted by γk.11 These intermediaries collectively hold a total of $Sk in factor k at

time t = 0 and absorb the trading demand shock qk at time t = 0+, which changes the factor-

k price from Pk(0) at time 0 to Pk(qk) at time 0+. By market clearing, the intermediaries

sell $qk and retain $Sk − qk of factor k after accommodating the trading demand shock. The

equilibrium price Pk(qk) for factor k must therefore be set such that it is optimal for the

intermediaries to sell yk = qk dollars or yk/Pk(0) units of factor k at the new price Pk(qk),

{q1, . . . , qK} = arg max
{y1,...,yK}

E

[
− exp

(
−

K∑
k=1

γk((Sk − yk)b
⊤
k R+RF,N+1Pk(qk)yk/Pk(0))

)]
.

(5)
11In practice, not all intermediaries may be willing to provide liquidity for every factor. If some inter-

mediaries choose not to provide liquidity for certain factors, this would manifest as a higher effective risk
aversion, γk, in our model.
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Here, Sk− yk multiplied by b⊤
k R represents the time-1 payoff from holding Sk− yk dollars of

factor k. Meanwhile, RF,N+1Pk(qk)yk/Pk(0) is the time-0+ proceeds from selling yk dollars of

factor k, compounded to time 1 at the gross risk-free rate RF,N+1. Applying the first-order

condition to (5), Proposition 1 determines the equilibrium price impact for each factor.

PROPOSITION 1 (Intermediary elasticity). Denoting λk = γk/RF,N+1, the price im-

pact of factor k satisfies

∆pk :=
Pk(qk)− Pk(0)

Pk(0)
= λkqkvar(b⊤

k R). (6)

The parameter λk is termed the “intermediary elasticity” of factor k. By equation (6),

we can express λk as follows:

λk =
∆pk

qkvar(b⊤
k R)

. (7)

Here, ∆pk represents the price impact (percentage price change) of factor k from time 0

to 0+. The denominator, qkvar(b⊤
k R), measures the change in the quantity of risk due

to the marginal trading demand shock into the factor. Consequently, λk captures the price

compensation that intermediaries require for absorbing an additional unit of traded risk at the

margin. This concept extends the canonical price of risk that measures price compensation

required for taking on an extra unit of unconditional risk.

We highlight three features of the intermediary elasticity. First, because the traded risk

factors have uncorrelated returns by construction, the equilibrium solution from (5) implies

that demand shocks qk for factor k affect only the price of factor k, without influencing

any other factors. Appendix A.3 provides a proof. Second, λk is invariant to scaling or

sign reversal of a factor. This underscores that, economically, λk reflects the per-capita risk
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aversion of intermediaries with respect to the factor.12 Third, intermediary elasticity differs

from the (inverse) elasticity (∆P/P )/(∆Q/Q) used in IO in two respects. On the one hand,

intermediary elasticity considers the quantity of risk in the denominator rather than the

quantity of securities. On the other hand, intermediary elasticity focuses on the amount

change in the quantity of risk rather than the percentage change, as the quantity of risk can

be compared directly across factors without further normalization.

2.4 Cross-Elasticity

We now appeal to the law of one price and use factor-specific intermediary elasticity to

determine the cross-elasticity between individual currencies. Consider the scenario where

currency n experiences a $1 trading demand shock, while customers’ trading demand shocks

for all other currencies remain constant. As explained in Section 2.2, this additional $1

trading demand shock for currency n would increase the trading demand shock to factor

k by an amount βn,k, which are shocks that cannot be diversified away. To induce the

intermediaries to bear these additional non-diversifiable factor risks, the price of these traded

risk factors must change, as discussed in Section 2.3, which in turn affects the prices of all

currencies that load on these risk factors.

Denoting the price impact of individual currency n as13

∆pn :=
Pn(f)− Pn

Pn

. (8)

Proposition 2 computes the model-implied cross-elasticity, which quantifies how a $1 trading
12For example, suppose we double the portfolio weight bk, then by equation (2), the factor-level trading

demand shock qk halves. By the law of one price, the factor-level price impact ∆pk and the return variance
var(b⊤

k R) double and quadruple, respectively, leaving λk unchanged.
13With a slight abuse of notation, we use ∆pn to denote the price impacts of individual currencies and

∆pk to denote the price impacts of factors.
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demand shock into currency m impacts the price of currency n. Note that this formula also

covers the case where m and n are the same, thereby calculating a currency’s price elasticity

to its own trading demand shock. Appendix A.4 provides a proof.

PROPOSITION 2 (Cross-elasticity). The intermediary cross-elasticity between curren-

cies n and m is:

∂∆pn
∂fm

=
K∑
k=1

∂qk
∂fm

× ∂∆pk
∂qk

× ∂∆pn
∂∆pk

=
K∑
k=1

βm,k × λkvar(b⊤
k R)× βn,k. (9)

The intermediary cross-elasticity, ∂∆pn/∂fm, calculates the price impact on currency-

n, ∆pn, from currency-m’s trading demand shock, fm, as channeled through the traded

risk factors and while holding customers’ trading demand shocks into all other currencies

constant. Proposition 2 shows that such cross-currency price impacts are channeled via three

steps. First, the trading demand shock into currency m changes factor-k trading demand

shock qk, with the sensitivity given by the beta coefficient βm,k, as shown in equation (2).

Second, changes in factor-k trading demand shock impact its price ∆pk, where the price

sensitivity is λkvar(b⊤
k R) (Proposition 1). Finally, changes in factor-k price ∆pk impact

currency-n price ∆pn through the law of one price, with the sensitivity being βn,k.

The model-implied intermediary cross-elasticity has two features. First, the model-

implied own-elasticity
∂∆pn
∂fn

=
K∑
k=1

β2
n,k × λkvar(b⊤

k R) (10)

is always positive as long as λk is positive. Positive λk indicates that intermediaries are

averse to bearing trading-induced risks rather than risk-seeking. On the other hand, the

cross-elasticity between two currencies could be negative, if the currencies have opposite

signs of beta loading to a factor, which reflects complementarity. We return to this point
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empirically in Section 5.3.

Second, the model-implied cross-elasticity is symmetric between any two currencies n

and m, as shown by
∂∆pn
∂fm

=
∂∆pm
∂fn

. (11)

This symmetry arises because
∂qk
∂fn

= βn,k =
∂∆pn
∂∆pk

. (12)

The first equality, relating to the sensitivity of trading demand shock, follows from our

portfolio theory (2), while the second equality, concerning price sensitivity, results from the

law of one price. Both sensitivities equal the beta of currency n to factor k, which gives rise

to the symmetry of the intermediary cross-elasticity.

2.5 Implementation Issues

We now discuss several issues in finding empirical counterparts to model primitives. In

practice, we do not observe Rn, the return of currency n from time 0 to 1 that is unaffected

by demand shocks; nor do we separately observe the price impact ∆pn from 0 to 0+. Instead,

we only observe the equilibrium return rn from 0 to 0+, which we measure as the currency-

specific return (explicitly defined in Section 3.2) over the course of a week.

With a slight abuse of notation, we use Rn to also denote the counterfactual currency

return from time 0 to 0+ in a scenario with no demand shock. The equilibrium return rn

from time 0 to 0+ is then the sum of ∆pn and Rn. Accordingly, the equilibrium return of

factor k from time 0 to 0+ is also the sum of the price impact from Proposition 1 and the
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counterfactual return, b⊤
k R:

rk = λkqkvar(b⊤
k R) + b⊤

k R. (13)

Because Proposition 1 measures var(R) using R from time 0 to 1 and we are now using R

from time 0 to 0+, an assumption for equation (13) to hold is that var(R) is proportional

across these time horizons. This assumption holds if, for example, R is i.i.d. over time.

Recall that the factors constructed in Section 2.2 have uncorrelated counterfactual re-

turns, i.e., cov(b⊤
k R,b⊤

l R) = 0, and uncorrelated trading demand shocks, i.e., cov(qk, ql) = 0.

Hence, equation (13) implies that the equilibrium returns of different factors are also uncor-

related, i.e., cov(rk, rl) = 0 for any k ̸= l. Consequently, when we empirically use equilibrium

return rather than counterfactual return, we recover the same set of factors (up to scaling)

as those in Section 2.2.

Finally, as price impacts are not directly observable, we estimate λk by running a time-

series regression of rk on qk, scaled by var(b⊤
k R). An unbiased estimate of λk requires that

cov(qk,b⊤
k R) = 0, or that qk is truly a trading demand shock that is exogenous to the

counterfactual factor return b⊤
k R. This condition is often violated in observed data, we thus

adopt an instrumental variables (IV) strategy in Section 5 to estimate λk.

3 Data

To identify traded risk factors, we need data on FX trading and returns. In this section, we

outline the various data sources that we use.
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3.1 Trading Data

Our FX trading data come from the CLS Group (CLS). CLS provides settlement services to

FX trades done by its 72 settlement members, who are mostly large multinational banks. As

such, CLS is the largest single source of FX executed data available to the market, covering

over 50% of global FX volumes.

We obtain FX order flow data from CLS. Specifically, we have the daily aggregate value

of all buy orders and all sell orders done between Banks and their customers in 17 currencies

between September 2012 and December 2023. The currencies in our sample include U.S.

dollar (USD), Australian dollar (AUD), Canadian dollar (CAD), Swiss frank (CHF), Danish

kroner (DKK), Euro (EUR), British pound (GBP), Hong Kong dollar (HKD), Israeli shekel

(ISL), Japanese yen (JPY), Korean won (KRW), Mexican peso (MXN), Norwegian kroner

(NOK), New Zealand dollar (NZD), Swedish kroner (SEK), Singaporean dollar (SGD), and

South African rand (ZAR). All of our data have Banks as one of the two counterparties in

the trade. Trades by Banks encompass trades by dealers who are affiliated with banks and,

by extension, trades by hedge funds who trade through their prime brokers. We interpret

the trading by Banks as capturing the activities of the representative financial intermediary

in our model. The customers in our data, who are Banks’ counterparty, are from one of three

groups: Funds, which include mutual funds, pension funds, and sovereign wealth funds; Non-

bank Financials, which include insurance companies and clearing houses; and Corporate.

To capture the total amount of FX risk exposure facing intermediaries, we are the first

to jointly analyze data on FX spot with data on FX forward and FX swap. The CLS data

on spot flows have recently been used in papers that examine topics ranging from market

microstructure to the impact of Fed policies (e.g. Ranaldo and Somogyi (2021), Roussanov

and Wang (2023)). Yet as we detail in Appendix Section B, the pronounced negative corre-
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lation between flows into spot versus forward and swap means that any elasticity estimated

from spot flows alone could underestimate the price impact of trading demand shocks. The

CLS data for forward and swap order flows organize transactions by maturity buckets. We

calculate the FX spot exposure inherent in future-settled forward and swap by discounting

the notional using forward rates.14 From the FX flow data in spot, forward, and swap, we

construct the dollar-valued total daily net customer inflow into each currency. As discussed

in Section 2.1, we measure all flows relative to USD.

We analyze trading and return at the weekly frequency. We therefore add up daily flows

in a week to obtain weekly flows that start every Thursday to the following Wednesday,

inclusive.

Our final trading data is a panel, between 2012-09-06 and 2023-12-31, of weekly net inflow

into 16 non-USD currencies, measured in USD across spot, forward, and swap transactions.

3.2 Return Data

We obtain most of the data needed to construct returns from Bloomberg. To calculate FX

returns, we get forward and spot price data for the 16 non-USD currencies in our sample.

All prices are at London closing, consistent with our trading flow measure.15

We define the weekly currency return as the outcome from borrowing USD at the US

risk-free rate today, converting to one unit of foreign currency at the spot exchange rate

and earning the foreign risk-free rate, then in a week, converting the foreign proceeds back
14Specifically, we use the 1-week forward rate to discount back forward and swap contracts with maturity

of 1-7 days, the 1-month forward rate for contracts with maturity of 8-35 days, the 3-month forward rate
for contracts with maturity of 36-95 days, and the 1-year forward rate for contracts with maturity of greater
than 96 days. The choice of forward rate depends on the range of the maturity bucket and forward contract
liquidity.

15CLS records daily flow as all orders submitted during the FX business day, which follows the London
FX market hours.
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to USD at the future spot rate. That is, for currency n from week t to t + 1: rt+1,n =

st+1,n − st,n + it,n − it,USD − xt,n = st+1,n − ft,n, where s is the log spot rate, f is the log

forward rate, i is the net risk-free rate, and x measures the deviation from the covered

interest-rate parity (CIP). Throughout, we define exchange rates as the number of USD per

one unit of foreign currency; a higher s thus corresponds to a depreciation of USD. Note that

our currency return includes CIP deviation (xt,n = ft,n− st,n− it,USD + it,n), so as to capture

compensation for all risks that intermediaries take in absorbing customer flows, including

possible inventory costs arising from balance sheet constraints.

3.3 Other Data

We collect data on various sovereign bond auctions to instrument for FX trading demand

shocks. Specifically, we obtain from government websites the auction announcement data for

the U.S. Treasury auctions, the Australian Treasury bond auctions, the Canadian Treasury

bond auctions, the U.K. Gilt auctions, the Japanese government bond auctions, the Italian

government bond auctions, the French OAT auctions, and the German Bund auctions.

We also collect various data to construct excess returns in six other asset classes. For

credit default swaps (CDS), we obtain five Markit indices from Bloomberg: North America

investment grade and high yield, Europe main and crossover, and Emerging Market. Returns

to these CDS indices are defined from the perspective of the seller. For commodities, we

obtain six Bloomberg commodity futures return indexes on energy, grains, industrial metals,

livestock, precious metal, and softs. For corporate bonds, we obtain five Bloomberg indices

on U.S. corporate bonds by credit rating (Aaa, Aa, A, Baa, high yield). For equities, we

use the “Market” return from Ken French’s website, which is the value-weighted returns

from all publicly traded U.S. firms in CRSP. For options, we obtain call and put pricing
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data on S&P500 from OptionMetrics, and construct portfolios of leverage adjusted option

returns following Constantinides, Jackwerth, and Savov (2013). For US Treasury bonds, we

get yields of the six maturity-sorted “Fama Bond Portfolios” from CRSP. We exclude the

portfolio of Treasury bills due to correlation with the risk-free rate. Finally, we use the

1-month U.S. Libor as a proxy for the risk-free rate. The Bloomberg CDS data are available

from 2007 onward, and the OptionMetrics data are available until December 2022. All other

pricing data start in January 2000 and end in December 2023.

4 Traded Risk Factors in FX

In this section, we identify traded FX factors from data. We first find that three risk

factors account for most of the non-diversifiable risks induced by FX trading. We then

show that these risk factors can be interpreted as the Dollar, the Carry, and the Euro-Yen,

respectively. Finally, we highlight that these risk factors also capture the preponderance of

the unconditional return and trading variations in individual currencies.

4.1 Baseline Traded FX Factors

Our objective is to find risk factors that can model FX trading’s impacts on currency prices in

the cross-section. We therefore need to find factors that maximally explain the risks induced

by trading. Following the procedure outlined in Section 2.2, we identify the traded risk

factors using weekly net flows (f) and log returns (r) of 16 non-USD currencies. The three

factors that explain the most amount of trading-induced risk are reported in Table 1. Each

column of Table 1 represents a factor, and the component values are the currency weights in

this factor. For example, in Factor 1, for every $1 bought, $0.15-worth of Canadian dollars

and $0.5-worth of Euro are sold. As discussed in Section 2.3, we can freely scale each factor
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without affecting the intermediary elasticity, and we accordingly scale all factors to facilitate

comparison.16 Because the risk factors that we identify are traded, they logically place more

weight on currencies that are more widely traded. In particular, six developed economy

currencies have consistently high weights across the top 3 factors, these currencies are AUD,

CAD, CHF, EUR, GBP, and JPY, and we highlight them in red. Of the total trading-

induced non-diversifiable risks, given by
∑K

l=1 var(ql)var(b⊤
l r), our three traded risk factors

account for 65%, 16%, and 9%, respectively. In other words, these three factors explain

approximately 90% of the risk that intermediaries bear when accommodating trading flows.

Principal component analysis (PCA) is often seen as sensitive to minor changes in data.

Yet the traded FX factors identified through our modified PCA procedure are robust to

changes in the sample period because we use both the return and flow covariance to pin

down the factors. In Table 2, we report the correlation between the traded FX factors

identified using our modified PCA on the full sample and those identified using the pre-

and post-2020 subsamples. The correlations for both returns and flows are notably high,

approaching 1 for the first factor and exceeding 0.8 for the other two factors. This evidence

suggests that the underlying data are well-behaved, and in particular, that the flow and

return covariance structures are rather stable over time.

A tempting alternative approach to finding traded FX factors may be to perform a PCA

directly on trading data. Portfolios from such an approach would simply place weight in

one single major currency. For example, as Appendix Table A3 illustrates, the first such

“traded FX factor” would place a portfolio weight of -1 on EUR and 0 on all other non-

USD currencies, reflecting that EUR/USD is the most actively traded pair. This result

arises because the standard PCA does not require the portfolios to also have uncorrelated
16Specifically, factor 1 has a weight of 1 for USD, factor 2 has all positive weights sum to 1 and all negative

weights sum to -1, and factor 3 has a weight of -1 for JPY.
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Table 1: Top 3 Traded FX Factors

Currency Factor 1 Factor 2 Factor 3

AUD -0.08 0.14 -0.08
CAD -0.15 0.56 -0.87
CHF -0.03 -0.07 -0.02
DKK -0.01 0 0.02
EUR -0.5 -0.43 1.16
GBP -0.11 0.18 0.09
HKD 0 -0.01 0.02
ILS 0 0 0
JPY -0.07 -0.49 -1
KRW -0.01 0.01 -0.01
MXN -0.01 0.02 -0.03
NOK -0.01 0.02 -0.01
NZD -0.01 0.02 -0.01
SEK -0.01 0.01 -0.01
SGD -0.01 0 0.02
ZAR -0.01 0.01 -0.01
USD 1 0.03 0.74

Var explained 65% 16% 9%

Notes: This table presents the portfolio weights of the top 3 traded FX factors, constructed following the
procedure outlined in Section 2.2. We use weekly return and flow data for 16 non-USD currencies from
September 2012 to December 2023. The portfolio weight of USD is computed as the negative sum of the
weights of all other currencies.

returns. In contrast, the portfolios identified in Table 1 have both uncorrelated returns and

uncorrelated flows, endowing the portfolios with the interpretation of risk factors.

4.2 Interpretation of Traded FX Factors

To better understand the risks captured, we conjecture and verify that the top three traded

FX factors represent the Dollar, the Carry, and the Euro-Yen, respectively. Examining

Factor 1 in Table 1, we see that all non-USD currencies enter the portfolio with a negative
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Table 2: Correlation Between Traded FX Factors in Full Sample vs. Subsamples

Factor 1 Factor 2 Factor 3

Return Pre 2020 0.97 0.83 0.83
Post 2020 1.00 0.97 0.89

Flow Pre 2020 0.98 0.82 0.81
Post 2020 0.99 0.96 0.81

Notes: In this table, we report the correlation between returns and flows of the traded FX
factors constructed based on the full sample versus returns and flows of the traded FX factors
constructed based on different subsamples. Pre-2020 refers to the sample period from September
2012 to December 2019, while post-2020 refers to the sample period from January 2020 to
December 2023.

weight. This pattern is reminiscent of the proverbial Dollar portfolio, which shorts all non-

USD currencies simultaneously and bets on the dollar exchange rate. We thus propose a

traded Dollar factor that goes long in USD and shorts the six most traded currencies (AUD,

CAD, CHF, EUR, GBP, and JPY) in equal weights. In contrast, Factor 2 in Table 1 has

positive weights on high interest rate currencies, e.g., AUD, and negative weights on low

interest rate currencies, e.g., JPY. This pattern coheres with the proverbial Carry portfolio,

which bets on violations of the uncovered interest-rate parity (UIP). We accordingly propose

a traded Carry factor that goes long in AUD, CAD, and GBP, and shorts CHF, EUR, and

JPY. Finally, Factor 3 in Table 1 has a large positive weight on EUR and a large negative

weight on JPY. We postulate a traded Euro-Yen factor that goes long in EUR and shorts

JPY. This Euro-Yen factor reflects the active currency trading between two of the world’s

largest economies, the Euro area and Japan, even as the Dollar and Carry factors place

both EUR and JPY on the same side of trading. In other words, long-short the Euro-Yen

generates non-diversifiable risks even after hedging out the Dollar and Carry factors.

The data support our interpretation of the traded FX factors. Using our proposed Dollar,
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Table 3: Correlation between Return and Flow to Baseline PC Factors versus to
Proposed Economic Factors

Factor 1 Factor 2 Factor 3

Return 0.98 0.95 0.92
Flow 1.00 0.99 0.95

Var explained by
Economic Factors 63% 15% 8%

Notes: This table displays the correlation between return and flow to baseline traded FX factors
in Table 1 (“PC Factors”) and return and flow to traded FX factors constructed from the proposed
factor weights of the Dollar, the Carry, and the Euro-Yen (“Economic Factors”).

Carry, and Euro-Yen factor weights, we construct factor returns and factor flows.17 In

Table 3, we show the correlation between the baseline traded FX factors in Table 1 (“PC

Factors”) and the traded FX factors constructed from the proposed factor weights (“Economic

Factors”). The correlations are close to 1 in both returns and flows for all three factors.

Together, the three Economic Factors can explain about 86% of all trading-induced non-

diversifiable risks, close to the risks accounted for by the PC Factors. Given the striking

similarity between the PC Factors and the Economic Factors, we focus on analyzing the

more interpretable Economic Factors in the rest of the paper.

The construction of traded FX risk factors reveals two important results. First, that just

three factors can explain almost all trading-induced risks validates our conceptual framework.

Indeed, we postulate that non-diversifiable trading risks are what get priced by intermedi-

aries; in such a world, FX trading flows would exhibit a strong factor structure. Second,

the traded FX factors have clear economic interpretations, elevating the relevance of our
17Specifically, we perform the procedures outlined in Section 2.2 after projecting both returns and flows

onto the space spanned by the proposed Dollar, Carry, and Euro-Yen factor weights. The resulting Dollar,
Carry, and Euro-Yen factors have uncorrelated returns and uncorrelated flows with each other.
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analysis on intermediaries’ risk exposure and risk tolerance. For example, the Carry trade is

a popular FX trading strategy and the Carry factor is a well-known risk factor in FX returns

(e.g., Lustig, Roussanov, and Verdelhan (2011)). Yet it is not previously known how much

Carry trades are done18 or how much trading of Carry contributes to observed return. We

answer the first question in this section by estimating intermediaries’ cumulative exposure

to the traded risk factors. We tackle the second question in Section 5.2 after we estimate

the intermediary elasticity of different traded FX factors.

The economic exposure to, say, the Carry trade is challenging to assess from trading data

alone: FX traders can simultaneously buy and sell multiple currencies, and exposures in one

currency can be quickly hedged or diversified away by trading other currencies. Yet the

traded FX risk factors represent precisely what is non-diversifiable. Cumulative flows into

the risk factors thus show the cumulative exposure to the currency portfolios that define the

risk factors.

Figure 1 plots the cumulative flow to each of the three factors by customer type. As

detailed in Section 3.1, there are three types of customers: Funds; Corporates; and Non-Bank

Financials. We also plot in dashes the Net Total, which represents the net customer flows that

Banks need to absorb. Then, by market clearing, the negative of the Net Total represents the

intermediaries’ cumulative flow. Panel (a) illustrates the flow to the Dollar factor. Over the

sample period, Funds are persistently selling Dollars, whereas Corporates are persistently

buying. In recent years, the buying pressure has been so strong that intermediaries have

had to be net sellers of the Dollar factor. We note that intermediaries, especially dealers,

may not be able to maintain a sustained inventory imbalance. The sustained provision of

USD here likely reflects deposit or wholesale funding made available by banks to which the
18https://www.economist.com/leaders/2024/08/15/time-to-shine-a-light-on-the-shadowy-carry-trade
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Figure 1: Cumulative Flow by Investor Type to Top 3 Traded FX Factors

(a) Dollar Factor

(b) Carry Factor

(c) Euro-Yen Factor

Notes: This figure displays the cumulative flows of the top three traded FX factors over our sample period,
from September 2012 to December 2023. There are three types of customers: Funds, Corporates, and Non-
Bank Financials. In addition to these customer flows, we plot in dashes the Net Total, which represents the
net customer flows that Banks (intermediaries) need to absorb.
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dealers are affiliated (Du and Huber (2024)). Moreover, intermediaries’ cumulative flows

represent their cumulative exposures from FX trading, but intermediaries could also offload

risks associated with the traded FX factors in other asset markets, a point that we explore

in Section 6. Panel (b) illustrates the flow to the Carry factor. We observe that customers

had not taken large directional bets with the Carry factor until 2022, but since then, they

have sold off the Carry factor, an action almost exclusively undertaken by Funds. As a

result, the Carry trade exposure borne by Banks, or intermediaries including dealers and

hedge funds, accumulated to $0.8 trillion between 2012 and 2023. Finally, from Panel (c),

we see that the Euro-Yen factor was sold by both Corporate and Funds right up to around

the Covid-19 Crisis in 2020. Since then, Funds have bought back all of their short position

to approximately neutral, while Corporate continued to sell the Euro-Yen factor. Thus,

intermediaries have also been accumulating exposures in the Euro-Yen. As JPY serves as a

“funding currency” (negative weight in the portfolio) in both the Carry and the Euro-Yen,

our analysis underscores that any unwinding of intermediaries’ short JPY positions may not

simply be a story about Carry trade.

In Figure 2, we plot the cumulative returns to the three traded FX factors. The Dollar

return has been strong, as USD has appreciated against most currencies over the last decade.

The Carry return had been around zero until 2022, but has since taken off. The uptick in

the Carry return coincided with the accumulation of Carry exposures by the intermediaries.

This suggests that FX trading may affect the pricing of these traded risk factors. We return

to this in Section 5.
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Figure 2: Cumulative Return of Top 3 Traded FX Factors

Notes: This figure displays the cumulative returns of the top three traded FX factors over our sample period,
from September 2012 to December 2023.

4.3 Factor Decomposition of Individual Currencies

Although the three factors are designed to maximally capture trading-induced risks, we show

that these factors also explain a substantial amount of unconditional return and trading of

individual currencies. Figure 3 illustrates the decomposition of individual currency’s trading

flow and return into the Dollar, the Carry, and the Euro-Yen factors. This decomposition is

achieved by regressing currency-level flows or returns on the flows or returns of traded FX

factors in the time series. Because the returns and flows of different factors are uncorrelated

by construction, the R2 from each regression is additive. Starting with flows in Panel (a),

the three factors account for virtually all of the trading in EUR and JPY (91% and 98%),

almost half of trading in CAD (48%), and a smaller fraction in AUD, CHF, and GBP. The

unexplained flow represents customer trading that can be diversified by intermediaries or

belong to other non-diversifiable risks that are, by construction, uncorrelated with the top

three factors.
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As Panel (b) illustrates, the Dollar, the Carry, and the Euro-Yen factors together account

for between 69% and 94% of individual currency’s unconditional return. The fact that these

traded risk factors can explain a high fraction of individual currency’s return variation is

not a foregone conclusion: the traded FX factors are only designed to rationalize changes in

FX risk that are induced by trading, not necessarily all the risks that are priced in the FX

markets. Reassuringly, these trade factors are also able to explain a significant amount of

the total risk in FX returns.

The large common variation with factors in both return and flow implies complex cross-

elasticity between currencies. We map out these cross-elasticities in the next section.

5 Elasticity in FX Markets

In this section, we estimate intermediary elasticity of the traded FX risk factors and apply

the estimates to recover the own- and cross-elasticity of individual currencies.

5.1 Instrument Construction

We are interested in estimating λk, the intermediary elasticity of traded FX factor k, in

equation (6). However, as discussed in Section 2.5, we do not directly observe price responses

induced by trading demand shocks (∆pk); instead, we observe the equilibrium return (rk)

that reflects both ∆pk and the counterfactual return in the absence of demand shocks (Rk).

Analogously, the factor flow that we construct, qk, includes both the flow due to trading

demand shocks and the flow due to fundamental changes, e.g., information. To isolate the

impact of λk, we must instrument for the trading demand shocks in qk.

As the traded FX factors are constructed to have uncorrelated returns, we apply Proposi-

tion 1 to estimate λk factor-by-factor without worrying about any cross-substitution. Specif-
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Figure 3: Decomposition of Currency Variation Explained by Traded FX Factors

(a) Flow

(b) Return

Notes: This figure decomposes the trading flows and returns of individual currencies into the Dollar, the
Carry, and the Euro-Yen factors. The decomposition is achieved by regressing currency-level flows and
returns against the flows and returns of the traded FX factors in the time series. It plots the marginal
R2 values attributed to each factor and labels the total R2. The positive and negative signs illustrate the
direction of the beta loadings.

ically, for each factor k = Dollar,Carry,Euro-Yen, we run a time-series regression of the
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factor’s weekly equilibrium return rk,t on its instrumented weekly flow q̂k,t:

rk,t/var(rk,t) = λkq̂k,t + ϵk,t, where (14)

qk,t = θkzk,t + ek,t, (15)

cov(zk,t, ϵk,t) = 0. (16)

The key is to find instruments (zk) for observed factor flows (qk) that are both relevant

(equation (15)) and valid (equation (16)). We propose sovereign bond auction announce-

ments as instruments. Government entities such as the US Treasury periodically auction off

long-term debt obligations, e.g., US Treasury notes and bonds. Foreign investors participate

in auctions of advanced economies, making these auctions relevant instruments. For exam-

ple, foreign investors directly purchased on average 14% of US Treasury notes and bonds

sold at auctions between September 2012 and December 2023.19

We moreover argue that these auctions, and in particular, the announcements of the

offered amount at upcoming auctions are valid instruments because they are plausibly ex-

ogenous and satisfy the exclusion restriction. First, the amount of securities planned to be

sold at auctions is likely not influenced by FX market conditions. This is in part because fis-

cal considerations such as tax receipt and expenditures are of paramount importance, and in

part because the majority of the security buyers are domestic. In other words, the instrument

is possibly exogenous. Second, our focus on the amount of securities offered to be auctioned

limits the information content of investors’ purchase. Foreign investors’ actual purchase

amount may be influenced by (expectations of future) exchange rates. Measures of auction

demand such as the bid-to-cover ratio may therefore affect exchange rates through channels
19Foreign investors’ actual purchase of auctioned Treasury securities could be much higher, as 14% ex-

cludes foreign purchases done indirectly via U.S. investment funds and dealers.
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other than the trading volume that the purchase induces. We circumvent this concern by

using offers rather than actual sales, lending credibility to the exclusion restriction.

Specifically, we use the US Treasury auction announcements as the instrument for the

Dollar factor. We use the Australian, Canadian, British, and Japanese government bond

auction announcements as the instrument for the Carry factor. We use the announcements

of Euro-Area Government bond auctions, defined as the sum of German, French, and Italian

government bond auctions, as the instrument for the Euro-Yen factor. For each auction,

we aggregate the offered amount across all announcements in a week, as in FX trading

flows.20 To instrument for factor flows in week t, we use announcements in week t for

the Dollar and the Carry, and announcements in weeks t − 1 and t for the Euro-Yen. The

longer window for European sovereign auctions allows for potential delays in auction-induced

currency conversion, which is a relevant concern because sovereign auctions in Germany,

France, and Italy do not allow direct bids from foreign investors. Finally, we remove any

linear trend in the size of the auctions over time.

5.2 Factor-Level Elasticity

Table 4 presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors. For

all three factors, the estimated intermediary elasticity is positive and statistically significant,

pointing to intermediaries having limited risk-bearing capacity. Both the OLS and the IV

estimates show that the intermediary elasticity is the smallest for the Dollar and the largest

for the Euro-Yen. Intermediaries are best able to bear marginal risks in the Dollar factor,

yet the Dollar factor accounts for the most trading-induced risks (Table 1); these two facts

together underscore that the Dollar factor is the most commonly traded FX risk factor.
20We focus on auctions for securities with maturity of one year or longer, as short-term securities are

typically bought by domestic investors such as money market funds.
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Table 4: Estimated Intermediary Elasticity

Dollar Carry Euro-Yen
OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

Factor flow 0.072∗∗∗ 0.107∗∗∗ 0.132∗∗∗ 0.138∗∗ 0.139∗∗∗ 0.335∗
(0.009) (0.037) (0.018) (0.064) (0.021) (0.195)

1st stage F-stat 24.8 6.5 3.8
Anderson-Rubin CI (0.01, 2.39) (0.09, 1.91)
Observations 590 386 590 228 590 560

Notes: This table presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors, based on
regression (14). The IV regressions report the first-stage heteroscedasticity and autocorrelation consistent
(HAC) effective F-statistics and the Anderson-Rubin confidence intervals at the 90% confidence level. The
estimation period spans from September 2012 to December 2023, excluding the first half of 2020. Newey-
West standard errors are reported in parentheses, where the bandwidth is chosen by the Newey and West
1994 selection procedure. *p <.1; **p <.05; ***p <.01.

We note that the OLS estimates are similar to the IV estimates but slightly smaller. In

other words, the bias that the IV corrects is that FX customers often “buy the dip”: when

a currency depreciates, they buy, and vice versa. Such behaviors are plausible for mutual

funds that buy foreign assets when exchange rates are favorable, and are consistent with

evidence showing that corporations flexibly adjust the denomination of their bond issuance

depending on exchange rates (Liao (2020)).

Table 5 quantifies the economic magnitude of the estimated intermediary elasticity λk.

Using Proposition 1, we calculate the impact of a $1 billion factor flow on factor price as

λkσ
2(rk,t), where σ(rk,t) is the annualized volatility of the factor return. Our estimates imply

that a $1 billion flow into the Dollar, Carry, and Euro-Yen factors increases their price by 5,

9, and 29 basis points, respectively. In other words, intermediaries raise the factor price by
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Table 5: Economic Magnitude of Intermediary Elasticity

Int. elasticity
(IV)

Return
volatility

Price impact
per $B flow

Flow
volatility

Return var
due to flow

λk σ(rk,t) λkσ
2(rk,t) σ(qk,t) λ2

kσ
2(rk,t)σ

2(qk,t)

Dollar 0.11 6.9% 5.0 bps 84.5 $B 38.6%
Carry 0.14 8.2% 9.3 bps 34.0 $B 14.8%
Euro-Yen 0.34 9.4% 29.3 bps 22.0 $B 47.6%

Notes: This table quantifies the economic magnitude of intermediary elasticity for the Dollar, Carry, and
Euro-Yen factors. The columns report, from left to right, the elasticity estimates from the IV regression,
the standard deviations of factor returns, the impact on factor prices per billion of factor flow, the standard
deviations of factor flows, and the share of factor return variance explained by factor flow.

about 1% in response to a $20 billion net trading demand shock to the Dollar factor, a $11

billion net trading demand shock to the Carry factor, and a $3.5 billion net trading demand

shock to the Euro-Yen factor. These price impacts are large compared to the estimated

(inverse) elasticity of US equities.21 Viewed through the lens of our model, the higher FX

intermediary elasticity reflects intermediaries’ greater aversion to liquidity provision, which

is especially pronounced for less well-known factors like Euro-Yen. The FX market is highly

specialized, where only participants like bank dealers and hedge funds offer liquidity to

absorb trading demand shocks. This specialization could result in a more limited supply of

arbitrage capital, which in turn leads to a higher aversion to liquidity provision.

Using annualized factor flow volatility, we further quantify the share of each factor’s

total return variance that can be explained by its flows. The last column of the table

shows that this fraction is 38%, 15%, and 48% for the Dollar, the Carry, and the Euro-

Yen factors, respectively.22 These numbers show that FX trading is an important driver of
21Gabaix and Koijen (2021) find that a 1% greater trading demand shock in the entire US stock market

increases price by 5%. The average market capitalization between 2012 and 2022 is about $31.7 trillion. To
raise the stock market price by 1% over our sample period therefore requires about $63 billion.

22Note that the Euro-Yen factor is constructed by orthogonalizing returns with respect to the Dollar and
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observed factor returns because of intermediaries’ limited risk-bearing capacity. We must

note, however, that this share of return variance explained is likely an upper bound because

it linearly extrapolates our IV estimates of the intermediary elasticity, which are based on

local variation. In practice, the price impacts of trading demand shocks are likely to be

concave in the size of the shocks, as larger price impacts could attract more intermediaries

to provide liquidity.

Our estimation period excludes the first half of 2020, which corresponds to the onset

of COVID. Markets experienced extreme price volatility and dislocation during this period,

casting doubts over our instruments’ validity and strength. Our estimates therefore reflect

the average intermediary elasticity outside of crisis periods. To examine possible fluctuations

in intermediaries’ risk-bearing capacity during normal times, we interact the factor flow

with measures that plausibly capture conditions that can affect the intermediaries.23 We

investigate the Dollar factor, as this is the most traded FX risk factor, and we present the

results in Appendix Table A4. The two measures that we consider are the 3-month AUD-JPY

cross-currency basis24 and the usage of the Federal Reserve’s (Fed’s) central bank liquidity

swap lines.25 We are interested in the instrumented interaction term between factor flow and

Carry factors. Hence, we do not claim that the Euro-Yen factor flow explains 48% of the variance of the
Euro-Yen currency pair exchange rate. Rather, the factor flow explains 48% of the variance of Euro-Yen
factor return, which is the return of the Euro-Yen currency pair after removing the effects of the Dollar and
Carry factors. Using Proposition 2, we find that Euro-Yen factor flow explains 29% of the return variance
of the Euro-Yen currency pair.

23To implement in the context of instrumented flow, we run two first-stage regressions, one for factor flow,
and one for factor flow interacted with the time-varying measure. Both regressions include the instrument,
the time-varying measure, and the interaction between the instrument and the time-varying measure as
explanatory variables. We demean and standardize the time-varying measure.

24Cross-currency basis measures deviations from covered interest-rate parity (CIP) and captures regu-
latory risks that affect asset prices (Du, Hébert, and Huber (2022)). The basis between AUD-JPY is the
largest among developed country currency pairs. We use the average basis in week t with factor flow in the
same week.

25Swap lines were set up during the financial crisis of 2007-09, and have been used throughout our
estimation period to provide occasional dollar funding to foreign central banks who then pass the funding
to local intermediaries. Given the friction in dispersing funding to local intermediaries, we use swap usage
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the time-varying measure. The interaction term with CIP deviation has the intuitive, positive

sign: our measure of CIP deviation increases when intermediaries are more constrained, and

this likely increases intermediary elasticity. However, the interaction term is not statistically

significant. The interaction term with swap line usage, on the other hand, is negative. This

is also intuitive: swap line provides immediate dollar funding, relieving potential funding

constraints, and should reduce the intermediary elasticity. This interaction is statistically

significant and sizeable. A one standard deviation increase in swap line usage decreases

intermediary elasticity by 5.6 bps. The fact that swap line usage increases intermediary’s

risk-bearing capacity for the Dollar factor suggests that the risk underlying the Dollar factor

is indeed USD funding.

Finally, we note that the precision of an IV estimation depends on the strength of the in-

strument. The heteroscedasticity and autocorrelation consistent (HAC) effective F-statistics

of the instruments are 24.8, 6.5, and 3.8, respectively, for flows to the Dollar, the Carry,

and the Euro-Yen. The effective F-statistics for flows to the Carry and the Euro-Yen are

below the rule-of-the-thumb threshold of 10. To better understand the implications of using

potentially weak instruments on the IV inference, we compute the Anderson-Rubin confi-

dence interval, which has the correct coverage regardless of the strength of the instrument

(Andrews, Stock, and Sun (2019)). For both the Carry and the Euro-Yen, the Anderson-

Rubin confidence interval is bounded away from zero, but is very wide in the other direction.

In other words, we are reasonably confident that the instrumented intermediary elasticity

is not zero; however, we are much less certain that the true value is not larger. A larger

estimate would mean even greater price response for a given unit of risk, implying an even

more limited risk-bearing capacity.

in week t − 1 with factor flow in week t. The Fed often conducts small-value operations. We exclude them
but the results are invariant to their inclusion.
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5.3 Cross-Currency Elasticity

Based on the IV estimated intermediary elasticity λk, we apply Proposition 2 to compute

the cross-currency elasticity and report the results in Table 6. For clarity, we have arranged

the six major currencies (AUD, CAD, GBP, CHF, EUR, JPY) in the upper left quadrant,

followed by the other ten currencies. The rows represent price impacts, and the columns

correspond to demand shocks. For instance, the entry of 7.9 in the first row and second

column implies that a $1 billion trading demand shock to the CAD increases the return of

AUD by 7.9 bps, holding the trading demand shocks in all other currencies equal. As noted

after Proposition 2, the model-implied cross-elasticity matrix is symmetric, meaning that

the impact of a $1 billion trading demand shock to CAD on AUD is the same as the impact

of a $1 billion trading demand shock to AUD on CAD.

Our panel of currency-level cross-elasticity is achieved by overcoming two key estima-

tion challenges. First, trading demand shocks likely correlate across currencies. Finding

cross-elasticity via regressions directly at the currency level would require instrumenting the

trading demand shocks in every currency and will likely have low power due to multicollinear-

ity. Second, currencies can have complex substitution patterns due to complementarity. A

structured IO model such as nested logit generates cross-elasticity by imposing potentially

counterfactual substitution restrictions. In contrast, our approach leverages the law of one

price to reduce the cross-elasticity table to only three factor-level intermediary elasticities,

λk, which we carefully estimate using instrumental variables. The subsequent mapping of

λk to the cross-elasticity between a panel of currencies is a standard asset-pricing procedure

that requires only returns.

Table 6 reveals several interesting patterns of cross-currency elasticity. First, all entries

are positive. This is because all currencies load on the Dollar factor in the same direction,
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which is the most important traded risk factor in the cross-section. Second, the cross-

elasticity between currencies on the long leg of the Carry trade (e.g., AUD, CAD, GBP,

MXN) and those on the short leg (e.g., CHF, EUR, JPY) is generally smaller. This modest

cross-elasticity owes to opposing beta loadings with respect to the Carry factor, so that the

currencies from these two groups hedge each other in risk exposures to the Carry factor.

In IO, such phenomena are typically referred to as complementarity. Third, we note that

although EUR and JPY are both low interest-rate currencies, the cross-elasticity between

them is rather small. This is because the two currencies are on the opposite side of the

Euro-Yen factor.

Moreover, although we analyze traded FX factors constructed based on the six major

currencies and USD, we recover meaningful cross-elasticity in other currencies due to these

currencies’ loadings on the three traded FX factors. As a sanity check of our methodology,

we examine the cross-elasticity for HKD, a currency pegged to USD within a narrow band

of 1%. We do not use this pegged information in our estimation. We observe that the entire

column and row associated with HKD are close to zero. The minimal impact vis-à-vis all

other currencies reflects the nature of a pegged currency, whose own trading demand shocks

have negligible risk implications for any currencies, and whose exchange rates relative to

USD are not meaningfully impacted by trading demand shocks in any other currencies.

6 Intermediary Elasticity Across Asset Classes

In this section, we use the traded FX risk factors to inform cross-elasticity between asset

classes. When intermediaries are able to hedge FX trading-induced non-diversifiable risks

cross-market, the traded FX factors become common factors across markets. Accordingly,

trading demand shocks in any one market could impact the prices in all markets by affecting
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the traded FX factors. We show that six non-FX assets load on the traded FX factors,

and use the intermediary elasticity of the trade FX factors to compute between-asset cross-

elasticity.

6.1 Traded FX Factors in Other Assets

We study six non-FX asset classes: credit default swap (CDS), commodities (Comm), cor-

porate bonds (CorpBond), equities (Equity), equity options (Opt), and US Treasury bonds

(UST).26 We regress each asset class’ monthly average excess return between 2000-02 and

2023-12 on returns from the Dollar, the Carry, and the Euro-Yen. We use the R2 from these

regressions to measure the amount of asset return variations explained by the three traded

FX factors and illustrate the results in Figure 4.27 Figure 4 also illustrates the sign of asset

class m’s return loading on each of the three traded FX factors (βm,k in Proposition 2).

The three traded FX factors jointly explain between 15% (commodities) and 41% (eq-

uities) of the returns in the six non-FX asset classes we examine. In other words, markets

are neither fully integrated, where only non-diversifiable risks that are systematic across all

markets are priced by intermediaries (extending Sharpe (1964) to the representative inter-

mediary in He and Krishnamurthy (2013)), nor completely segmented such that risks priced

in each market are idiosyncratic to that market (possibly due to reasons in Siriwardane,

Sundaram, and Wallen (2022)). We note that our analysis provides a lower bound on the

degree of integration between markets, as there could be non-traded common risk factors

priced across markets.28

26We construct the return of each asset class as the equal-weighted average return of all available portfolios.
27The correlation among weekly factor returns is, by construction, zero. The correlation among monthly

factor returns is close to zero. We report the incremental R2 by adding the three factors in the order of the
Dollar, the Carry, and the Euro-Yen.

28We also explore the explanatory power of traded FX factors for other assets’ returns outside of crisis
periods (e.g., GFC, Covid). As Appendix Figure A3 shows, the results are largely similar.
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Figure 4: Cross-Asset Return Variation Explained by Traded FX Factors

Notes: This figure decomposes the returns of individual assets into the Dollar, the Carry, and the Euro-Yen
factors. The decomposition is achieved by regressing asset class monthly average excess return between 2000-
02 and 2023-12 on returns from the three traded FX factors. The returns from CDS are available starting in
2007-04. The returns from Opt end in 2022-12. The figure plots the marginal R2 values attributed to each
factor and labels the total R2. The positive and negative signs illustrate the direction of the beta loadings.

Figure 4 shows that each asset market has its unique loading on the three traded FX

factors, both in terms of strength and in terms of direction. To start, while the Dollar factor

is statistically significantly present in the return of all six asset classes, it is least important

in explaining the return of US Treasury bonds.29 Moreover, while all other asset classes

load positively on the Carry factor, the US Treasury bonds load negatively on it. This

contrast suggests that large shocks to the Carry factor could be a reason for divergent price

movements in US Treasury bonds versus other assets. Finally, the Euro-Yen factor is less

prominent in non-FX asset classes but it does explain a non-negligible amount of return in

corporate bonds and equities.
29Given that foreign investors hold nearly a quarter of Treasury bonds, and that their demand potentially

affects both Treasury returns and exchange rate, it may be surprising that Treasury returns load so little
on the Dollar factor. One possible reason for this attenuated connection is that foreign investors hedge a
substantial amount of the USD FX risks associated with their security holdings, especially bonds (Du and
Huber (2024)).

44



Table 7: Asset Elasticity to Traded FX Factors

CDS Comm CorpBond Equity Opt UST

Dollar -2.0 -5.0 -2.8 -4.4 -4.4 -0.5
Carry 3.7 1.6 3.7 7.9 6.1 -2.3
Euro-Yen -2.5 -10.3 -7.3 -10.8 -6.6 -1.6

Notes: This table uses Proposition 2, the estimated factor-level elasticity λk from Table 4, and the
beta loadings of assets to factors (signs illustrated in Figure 4) to compute cross-elasticity between
traded FX factors and six non-FX asset classes. Each entry represents the price movement in bps
of a row-asset, as induced by a $1 billion trading demand shock into a column-asset. As noted after
Proposition 2, the model-implied cross-elasticity matrix is symmetric, so the table only presents traded
FX factors in rows and the six asset classes in columns.

6.2 Intermediary Elasticity and Cross-Asset Elasticity

The presence of traded FX factors in other asset classes implies that, because of interme-

diaries’ limited risk-bearing capacity, trading in FX could also affect risk premia in these

markets. In Table 7, we report the price impact (bps) in non-FX markets due to a $1 billion

trading demand shock to each of the three traded FX factors. The magnitude of the price

impact depends on two forces: the loading of an asset class m on traded FX factor k, and

the intermediary elasticity of factor k. This is why although most asset classes load heavily

on the Dollar factor, the price impact from a $1 billion trading demand shock to the Dollar

factor is rather modest. In contrast, the Carry factor and the Euro-Yen factor elicit much

stronger price responses in other markets. We must bear in mind, however, that on aver-

age, shocks to the Carry and the Euro-Yen factors are much smaller in magnitude (Table 5,

column Flow Volatility σ(qk,t)).

We can moreover consider cross-market elasticity as channeled through the traded FX

factors. Trading demand shocks in any one market would alter the intermediary’s exposure

to the traded FX factors. As the intermediary hedges, or offloads, the altered risk exposure,
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Table 8: Cross Elasticity Between Assets Due to Traded FX Factors

CDS Comm CorpBond Equity Opt UST

CDS 2.4 3.5 3.2 5.8 4.7 -0.5
Comm 8.9 6.0 9.5 7.7 0.7
CorpBond 4.8 8.3 6.5 -0.2
Equity 14.6 11.4 -0.9
Opt 9.3 -0.6
UST 0.7

Notes: This table uses Proposition 2, the estimated factor-level elasticity λk from Table 4, and the
beta loadings of assets to factors (signs illustrated in Figure 4) to compute cross-asset elasticity. Each
entry represents the price movement in bps of a row-asset, as induced by a $1 billion trading demand
shock into a column-asset. As noted after Proposition 2, the model-implied cross-elasticity matrix is
symmetric, meaning that the impact of a $1 billion trading demand shock to Comm on CDS is the
same as the impact of a $1 billion trading demand shock to CDS on Comm, so we report only the
upper half.

prices of the traded FX factors change, which in turn affect the price of all other asset

classes. Following Proposition 2, we combine the intermediary elasticity for traded FX

factors with asset classes’ return loadings on these factors to arrive at the own- and cross-

elasticity between six asset classes (Table 8). Similar to Table 6, each number in Table 8

represents a row-asset’s price movement in bps that is induced by a $1 billion trading demand

shock into a column asset, as channeled through both assets’ exposure to the three traded FX

factors.

Consider a $1 billion trading demand shock in corporate bonds. This influx exposes the

intermediary to more risk associated with the three traded FX factors. As these risks are

non-diversifiable, the intermediary demands compensation, increasing the price on the three

factors, which increases the price on corporate bonds by 4.8 bps. Moreover, because CDS

returns depend on the same set of risk factors, the price of CDS also increases, by 3.2 bps.

The same forces lead to price impact in the US Treasury bonds as well. However, because
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corporate bonds and US Treasury bonds load on the Carry factor with opposite signs, a

trading demand shock that increases intermediaries’ exposure to Carry actually lowers the

price of US Treasury bonds. The net impact on Treasury price is a decrease of 0.2 bps.

Cross-elasticity between asset classes arises because intermediaries are simultaneously

active across many markets and these intermediaries have limited risk-bearing capacity for

commonly traded risk factors. The degree of cross-elasticity thus depends on loadings of

traded common risk factors across asset classes. Our analysis provides the first estimates

of cross-elasticity across asset classes. Yet we must underscore that our estimates capture

only the intermediary elasticity due to exposure to traded FX factors. That is, our estimate

should not be interpreted as the total price response to $1 of trading into an asset market,

as these assets can load on other risk factors that we do not capture. Nevertheless, our ap-

proach advances the understanding of how asset markets are linked, addressing an important

question that has been elusive due to the limited availability of trading data and reliable

instruments across markets.

7 Conclusion

In conclusion, this paper studies the limited risk-bearing capacity of intermediaries and

its implication for asset prices. We measure intermediaries’ risk-bearing capacity with a

new measure, “intermediary elasticity”, defined as the price response to a marginal unit of

risk induced by trading demand shocks. We apply our framework to the FX market and

find that just three traded risk factors can jointly account for 90% of the non-diversifiable

risks borne by intermediaries when accommodating FX trading flows. These three traded

FX factors resemble the Dollar, the Carry, and the Euro-Yen, and reveal intermediaries’

otherwise unobserved risk exposure. Through instrumental variable analysis, we show that

47



intermediaries raise prices by 5 to 30 bps in response to $1 billion net trading demand shock

to these factors. In addition to pricing individual currencies, the three traded FX factors

also price CDS, commodities, corporate bonds, equities, options, and US Treasury bonds.

This allows us to use our estimated FX-factor elasticity to quantify the cross-elasticity of a

panel of currencies and across 7 major asset classes.

A distinguishing feature of our paper is the use of factor-level intermediary elasticity

to inform cross-elasticity at both the currency and asset-class levels. At the heart of this

cross-asset and cross-market demand transmission are three elements: assets’ exposure to

the traded risk factors, the amount of non-diversifiable factor risks assumed by intermedi-

aries when accommodating trading demand shocks, and the price intermediaries charge for

absorbing these risks. Combining these three elements generates novel transmission pat-

terns, where trading demand shocks in one market could affect prices in other markets by

differential magnitudes and even directions. As intermediaries function at the juncture of

financial markets and real sectors, how intermediaries transmit trading demand shocks to

asset prices across different markets is essential to understanding intermediaries’ role in the

broader economy.
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A Proofs

This appendix provides proofs omitted in the main text.

A.1 Solution for Traded Risk Factors

In this appendix, we present solutions for traded risk factors in Section 2.2.

We conduct Cholesky decomposition of var(R) as U⊤U. Then, we define gk = Ubk for

each factor k. Equation (2) implies that the factor-level demand shock is

qk = (b⊤
k var(R)bk)

−1b⊤
k var(R)f = (g⊤

k gk)
−1g⊤

k Uf . (A1)

Moreover, the sequential optimization problem (4) becomes

max
gk

(g⊤
k gk)

−1var(g⊤
k Uf) (A2)

s.t.g⊤
k gj = 0 for k ̸= j.

This becomes a standard PCA problem that is solved by the eigenvalue decomposition of the

matrix var(Uf) (Jolliffe, 1986). The eigenvectors are gk and the corresponding eigenvalues

are proportional to the fraction of explained variance. Once we obtain gk, the portfolio

weights are obtained by bk = U−1gk. Moreover, because qk are the outcome of the PCA

problem (A2), different qk are uncorrelated with each other by construction.

A.2 Invariance of Factors under Alternative Numeraire Currency

In this appendix, we prove that the factors constructed in Appendix A.1 remain unchanged

when we alter the numeraire currency used to measure trading demand shocks and returns.
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Suppose we switch from using USD to the N -th currency as the numeraire. We denote

the trading demand shock from the N -th currency to the n-th currency as f̃n for n =

1, 2, . . . , N −1, and the trading demand shock from the N -th currency to USD as f̃N . Recall

that fn represents the trading demand shock from USD to the n-th currency. Because each

trading demand shock fn (for n = 1, 2, . . . , N − 1) can be broken down into a component

from USD to the N -th currency and another from the N -th currency to the n-th currency,

we can express this transformation as follows:

f̃ = (f̃1, f̃2, . . . , f̃N−1, f̃N)
⊤ =

(
f1, f2, . . . , fN−1,−

N∑
n=1

fn

)⊤

= Cf , (A3)

where we define the matrix

C :=



1 0 . . . 0 0

0 1 . . . 0 0

...
... . . . ...

...

0 0 . . . 1 0

−1 −1 . . . −1 −1


. (A4)

Similarly, returns are now measured relative to the N -th currency. Specifically, R̃n for

n = 1, 2, . . . , N −1 represents the return from borrowing at the N -th currency’s riskfree rate

to invest in the n-th currency’s riskfree rate. Similarly, R̃N denotes the return from borrowing

at the N -th currency’s riskfree rate to invest in the USD riskfree rate. The transformation
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of returns can thus be described as follows:

R̃ = (R̃1, R̃2, . . . , R̃N−1, R̃N)
⊤ = (R1 −RN , R2 −RN , . . . , RN−1 −RN ,−RN)

⊤ = C⊤R.

(A5)

Now, we apply Appendix A.1 to analyze the factors using R̃ and f̃ . Specifically, the

variance of R̃, given by var(R̃) = C⊤var(R)C, can be decomposed as C⊤U⊤UC = Ũ⊤Ũ,

where Ũ := UC. Subsequently, the eigenvalue decomposition is transformed to

Ũvar(f̃)Ũ⊤ = UCCvar(f)C⊤C⊤U⊤ = Uvar(f)U⊤, (A6)

where we use the fact that CC = IN . This derivation reveals that the eigenvectors gk and

eigenvalues are invariant. The resulting portfolio weights under the new numeraire currency

are given by b̃k = Ũ−1gk = C−1U−1gk = C−1bk. Hence, the factor returns also remain

invariant, because b̃⊤
k R̃ = b⊤

k (C
−1)⊤C⊤R = b⊤

k R.

A.3 Proof of Proposition 1

Simplifying equation (5), we have

E

[
− exp

(
−

K∑
k=1

γk((Sk − yk)b
⊤
k R+RF,N+1Pk(qk)yk/Pk(0))

)]

= − exp

[
−

K∑
k=1

(
γk(Sk − yk)E[b⊤

k R] + γkRF,N+1Pk(qk)yk/Pk(0)− γ2
k(Sk − yk)

2var(b⊤
k R)/2

)]
,

(A7)
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where the last equality uses the fact that cov(b⊤
k R,b⊤

j R) = 0 for k ̸= j. Taking the first-

order condition against yk, we obtain

0 = γkE[b⊤
k R]− γkRF,N+1Pk(qk)/Pk(0)− γ2

k(Sk − yk)var(b⊤
k R). (A8)

Because the optimal yk = qk, we obtain

Pk(qk)/Pk(0) =
γk(qk − Sk)var(b⊤

k R) + E[b⊤
k R]

RF,N+1

, (A9)

Specifically, when qk = 0, we have

Pk(0)/Pk(0) =
−γkSkvar(b⊤

k R) + E[b⊤
k R]

RF,N+1

. (A10)

Taking the difference, we obtain equation (6).

A.4 Proof of Proposition 2

Because factors have uncorrelated returns by equation (4), we can project the return of any

currency n onto the factors and obtain

R(n) =
K∑
k=1

βn,kb
⊤
k R+ en, (A11)

where en is the idiosyncratic return of currency n that is uncorrelated with any factor b⊤
k R.

Hence, by the law of one price and equation (6), the price impact of currency n is

∆pn =
K∑
k=1

βn,k∆pk =
K∑
k=1

λkqkvar(b⊤
k R)βn,k. (A12)
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Therefore, we have

∂∆pn
∂qk

=
∂∆pk
∂qk

× ∂∆pn
∂∆pk

= λkvar(b⊤
k R)× βn,k. (A13)

Next, equation (2) implies that ∂qk/∂fm = βm,k. Hence, we have

∂∆pn
∂fm

=
K∑
k=1

∂qk
∂fm

× ∂∆pn
∂qk

=
K∑
k=1

βm,k × λkvar(b⊤
k R)× βn,k, (A14)

which is equation (9).

B Inclusion of Non-spot FX Derivatives Trading Flows

Foreign exchange trades can be executed in the spot market and in the derivatives market

of forwards and swaps. Trading in the derivatives market can expose the intermediary to

foreign exchange risk. Consider a customer-initiated trade of selling $100-worth of JPY

1-month forward against USD. In the absence of other trades, an intermediary who has

no capital, maintains a net neutral FX exposure, and serves as the counterparty in this

trade, must satisfy the obligation to deliver $100 in a month by setting aside $100/(1+ r$1M)

today, where r$1M is the 1-month USD risk-free rate. Similarly, the intermediary will sell

100/(1 + rJPY
1M ) of JPY today to both fund his USD purchase and to ensure FX neutrality

when he receives the promised delivery from the customer. To the intermediary, therefore,

a forward contract is no different from a spot transaction but for the fact that the amount

of implied FX exposure in a forward is less than its notional.

Because we are interested in measuring all the FX risks that intermediaries have to bear

by accommodating customer trading flows, we consider trading flows in both the spot and
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Figure A1: FX daily turnover against USD

Notes: This figure plots the global daily volume of foreign exchange spot versus forward and FX swaps
transactions involving USD. Daily volume is calculated as the average of all trading days in April of the
survey year. The survey is conducted triennially from 2001 to 2022 by BIS.

the derivatives market.30 In this appendix, we explore the difference between trading flows

into the spot versus the derivatives market and the implications of using trading data in only

one of the two markets in our analysis.

We start by examining the observed trading flows into individual currencies. The triennial

survey conducted by the Bank of International Settlement (BIS) indicates that there is twice

as much trading flow in the FX derivatives market as in the spot market (Appendix Figure

A1). Appendix Table A1 reports the correlation between the net flow into the spot versus

the derivatives market for each of the six major currencies in our sample. The absolute

strength of the correlation ranges between 0.17 and 0.62, suggesting sizeable comovements

in trading flows between the spot and the derivatives FX market.
30We treat swaps as a spot transaction plus a forward contract.
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Table A1: Currency-specific correlation between net trading flow in spot vs.
non-spot derivatives

AUD CAD CHF EUR GBP JPY
-0.48 0.17 -0.54 -0.39 -0.62 -0.35

Notes: This table reports the correlation between net flows into individual cur-
rencies in the spot market and in the non-spot derivatives market.

Comovements in observed trading flows could be induced by common risk factors that

are present in both the spot and the derivatives market. If so, trading data from either

market alone should be sufficient to recover the traded FX risk factors. At the same time,

if there are strong comovements in trading flows to the traded FX factors, then relying on

data from only one market risks introducing measurement error in the elasticity estimation.

In Appendix Table A2, we compare the traded FX factors recovered separately from

the spot market and the non-spot derivatives market. The top row shows the correlation

between returns of factors estimated using only one of the individual markets. For the first

factor, the return correlation is close to 1, and this correlation is 77% for the second factor

and 73% for the third factor. Such pronounced relationships underscore the robustness of

the underlying factors and suggest that the same risk factors drive trades across the spot

and the derivatives market. The bottom row shows the correlation between flows to factors

estimated using only one of the individual markets. The correlations are -0.51, -0.13, and

-0.35 for the three factors, respectively.

The marked association between factor returns and factor flows points to the strength

and limitation of using only data in the spot market. On the one hand, the tight correlation

between factor returns constructed using data from individual markets shows that the spot

market alone is sufficient to recover the underlying risk factors because these factors drive
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Table A2: Correlation between Returns to Factors Estimated in Different
Samples

Factor 1 Factor 2 Factor 3
Return 0.99 0.77 0.73
Flow -0.51 -0.13 -0.35

Notes: This table reports the correlation between returns
and the flows to each of the top three risk factors as esti-
mated in the spot market versus in the non-spot derivatives
market.

trades in both the spot and derivatives markets. On the other hand, using only data from the

spot market is likely insufficient for estimating elasticity to the risk factors because the spot

market data alone may not provide an appropriate measure of the flow changes. Estimating

elasticity requires instrumenting for the flow that induced the observed price change. As

spot flows and derivatives flows are highly correlated, it is empirically difficult to isolate

variations in just the spot flow. Specifically, because factor flows in the spot market are

negatively correlated with factor flows in the derivatives market, instrumenting for just the

spot market will overestimate factor flows, biasing the estimate to imply less price change

per unit of additional risk.
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C Additional Figures and Tables

Figure A3: Cross-Asset Return Variation Outside of Crises

Notes: This figure decomposes the returns of individual assets into the Dollar, the Carry, and the Euro-Yen
factors. The decomposition is achieved by regressing asset class monthly average excess return between 2000-
02 and 2023-12 on returns from the three traded FX factors. We exclude the GFC (2007-07 through 2010-07)
and COVID (2020-01 through 2020-06) period. The returns from CDS are available starting 2007-04. The
returns from Opt end in 2022-12. It reports both the marginal R2 values attributed to each factor and the
total R2. The positive and negative signs illustrate the direction of the beta loadings.
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Table A3: Top 3 PCs from FX Trading Flows

Currency PC 1 PC 2 PC 3

AUD -0.03 0.03 0.12
CAD -0.04 1.00 -0.06
CHF -0.01 -0.02 -0.06
DKK -0.00 -0.00 0.01
EUR -1.00 -0.03 0.03
GBP -0.02 -0.01 0.26
HKD -0.00 -0.02 -0.00
ILS -0.00 -0.01 -0.00
JPY -0.04 -0.06 -0.95
KRW -0.00 0.01 -0.00
MXN -0.01 0.01 -0.00
NOK 0.00 0.01 0.01
NZD -0.01 0.01 0.01
SEK 0.01 0.00 0.00
SGD -0.01 -0.01 0.01
ZAR -0.01 0.00 0.01
USD 1.17 -0.92 0.62

Flow Var
explained 46% 21% 12%

Notes: This table presents the portfolio weights of the top 3 traded FX factors, constructed using a standard
PCA of FX trading flows. We use weekly flow data for 16 non-USD currencies from September 2012 to
December 2023. The portfolio weight of USD is computed as the negative sum of the weights of all other
currencies.
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Table A4: Time-varying λ for the Dollar factor

Baseline CIP deviation Swap line usage
(1) (2) (3)

Factor flow 0.107∗∗∗ 0.160∗ 0.106∗∗∗
(0.037) (0.092) (0.029)

Flow × CIP dev 0.063
(0.130)

CIP deviation 0.172
(0.178)

Flow × swap line -0.056∗
(0.034)

Swap line usage -0.449∗∗
(0.217)

Observations 386 386 385

Notes: This table reports the time-varying λk estimation results for the
Dollar factor, as obtained using instrumental variables. “CIP deviation” is
measured by the weekly average AUD-JPY 3-month IBOR cross-currency
basis, demeaned and standardized. “Swap line usage” is the week t−1 average
amount outstanding at the Federal Reserve’s central bank liquidity swap line,
demeaned and standardized. Newey-West standard errors are reported in
parentheses, where the bandwidth is chosen by the Newey and West 1994
selection procedure. *p <.1; **p <.05; ***p <.01.

A.11


	Introduction
	Theoretical Framework
	Model Setup and Conceptual Framework
	Factor Construction
	Intermediary Elasticity
	Cross-Elasticity
	Implementation Issues

	Data
	Trading Data
	Return Data
	Other Data

	Traded Risk Factors in FX
	Baseline Traded FX Factors
	Interpretation of Traded FX Factors
	Factor Decomposition of Individual Currencies

	Elasticity in FX Markets
	Instrument Construction
	Factor-Level Elasticity
	Cross-Currency Elasticity

	Intermediary Elasticity Across Asset Classes
	Traded FX Factors in Other Assets
	Intermediary Elasticity and Cross-Asset Elasticity

	Conclusion
	Proofs
	Solution for Traded Risk Factors
	Invariance of Factors under Alternative Numeraire Currency
	Proof of Proposition 1
	Proof of Proposition 2

	Inclusion of Non-spot FX Derivatives Trading Flows
	Additional Figures and Tables

