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Abstract

We jointly analyze foreign exchange trading and returns to identify traded risk
factors and study how demand shocks propagate through them. We propose a
novel procedure to net out diversifiable risks induced by trading across currencies
and find that three factors — Dollar, Carry, and Euro-Yen — explain 90% of non-
diversifiable trading-induced risk. These factors are priced both unconditionally
and conditionally on trading. Instrumental variables analysis reveals that these
factors’ prices rise 5 to 30 bps per $1 billion demand shock. Combining factor-
level price sensitivity with assets’ factor exposures, we quantify cross-multipliers
for 17 currencies and seven asset classes.
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1 Introduction

Demand shocks unrelated to information can drive significant fluctuations in asset prices
(e.g., Lee, Shleifer, and Thaler, 1991; Froot and Ramadorai, 2008; Koijen and Yogo, 2019).
How do demand shocks propagate across assets? Specifically, how does the price of one asset
respond to demand shocks in another asset?

In this paper, we develop a novel approach to empirically study demand propagation
through traded risk factors. Our setting is the foreign exchange (FX) market, where cus-
tomers’ trades are almost exclusively accommodated by specialist intermediaries such as
dealers and hedge funds. These risk-averse intermediaries require compensation for bearing
trading-induced risks, thus demand shocks can lead to price adjustment in currencies and
other correlated assets (Grossman and Miller, 1988; Duffie, 2010; Gabaix and Maggiori, 2015;
Vayanos and Vila, 2021). Our innovation lies in using factors to characterize trading-induced
risks and empirically quantify demand propagation. The advantage of factors arises because
FX intermediaries simultaneously manage a portfolio of currencies, enabling them to diver-
sify trading-induced risks across currencies.1 For example, if customers buy one currency and
sell another to intermediaries, the intermediaries can offset some risks if the returns of the
two currencies are positively correlated. In other words, the relevant risk for intermediaries
— and thus for asset pricing — is the portion of trading-induced risks that cannot be further
diversified. Drawing on insights from Markowitz (1952) and Ross (1976), we characterize
these trading-induced non-diversifiable risks using factors. We then use instrumental vari-
ables to estimate these factors’ price sensitivity to trading-induced risks. Finally, combining
these factor-level price sensitivity with individual assets’ factor exposures, we uncover novel
patterns of demand propagation across a panel of 17 currencies and seven asset classes.

We begin by identifying the non-diversifiable risks generated by FX trading. To achieve
this, we jointly analyze a unique dataset of daily trading flows between customers and in-
termediaries across 17 major currencies and a panel of currency returns. We develop a
novel approach that extends portfolio theory to extract “traded risk factors” that explain
the largest variations in risk exposure driven by customer trading. Unlike merely tradable
factors, these traded factors capture non-diversifiable risks that investors collectively deem
important, as revealed by their actual trading. The two most prominent traded FX factors
resemble the well-known Dollar and Carry factors (Lustig, Roussanov, and Verdelhan, 2011).
Additionally, we identify a Euro-Yen factor that partially reflects risks stemming from sub-
stantial currency trading between the Euro area and Japan. This factor is orthogonal to

1This is particularly evident when considering the intermediary sector as a whole, where agents share
risks of different currencies by trading through the deep and liquid inter-dealer network.
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the Dollar and Carry factors and delivers a Sharpe ratio comparable to that of the Carry
factor. By simultaneously incorporating trading and return data, our approach identifies
factors that differ from those derived solely from returns, where the Carry factor is not read-
ily apparent and the Euro-Yen factor is entirely absent. Our approach also contrasts with
analyses based solely on flows, which surface currency pairs with the highest trading volumes
as “factors.” Together, the top three traded FX factors explain 90% of the non-diversifiable
risks intermediaries face in accommodating customer trading. Beyond explaining risks, these
factors reveal intermediaries’ otherwise unobserved risk exposures. For instance, using net
trading flows into the Carry factor, we estimate that intermediaries accumulated $0.8 trillion
in Carry trade exposure from 2012 to 2023.

Having identified the traded FX factors, we proceed to estimate each factor’s price sen-
sitivity to trading-induced risks. Because the factors are constructed to be uncorrelated,
we can estimate each factor’s price sensitivity independently, without concerns about cross-
factor price interactions. However, because we observe the equilibrium customer trading
flows, we instrument for demand shocks to each traded FX factor to ensure the estimated
price sensitivity is not contaminated by the effects of fundamentals (e.g., the arrival of new
information) on price. We use as instrumental variables the announcements of the offering
amount at upcoming sovereign bond auctions in the U.S., Australia, Canada, France, Ger-
many, Italy, Japan, and the U.K. These sovereign auctions often attract foreign investors
who need to convert currencies to participate, making the instruments relevant. At the
same time, because these auctions are typically forward-guided,2 the announcements con-
tain limited new information, making the instruments plausibly exogenous and satisfying the
exclusion restriction. Our estimates imply that inducing intermediaries to absorb a $1 billion
non-diversifiable demand shock requires price increases of 5 basis points (bps) for the Dollar,
9 bps for the Carry, and 29 bps for the Euro-Yen. These are significantly larger price re-
sponses than those estimated for the U.S. equities market factor (Gabaix and Koijen, 2021),3

suggesting that arbitrage capital is more limited in FX than in equities. The variation in price
sensitivity to risks across traded FX factors may also reflect differences in available arbitrage
capital, with lesser-known factors such as the Euro-Yen attracting less arbitrage capital and
exhibiting greater price sensitivity. Furthermore, we find evidence of state-dependent price
sensitivity to risks. Specifically, the Dollar factor’s price sensitivity varies with the public

2For example, in the U.S., the Treasury Borrowing Advisory Committee (TBAC) releases two-quarter-
ahead recommendation on auction amounts, and actual auctions exhibit little deviation from these recom-
mendations (Rigon, 2024).

3Gabaix and Koijen (2021) find that a 1% larger trading demand shock to the entire U.S. stock market
increases price by 5%. Such a shock can be interpreted as a shock to the market factor. The average market
capitalization between 2012 and 2022 is about $31.7 trillion. A $1 billion demand shock in our sample period
therefore raises the price of the market factor by about 2 bps.
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equity returns of large intermediaries. As equity prices reflect forward-looking investment
opportunities that influence intermediaries’ risk-bearing capacities, this covariation supports
the interpretation that the observed price sensitivity arises from a risk-return trade-off.

Using the estimated factor-level price sensitivity to risks, we compute the currency-level
cross-multiplier between any arbitrary pair. This cross-multiplier quantifies demand propa-
gation by showing how a demand shock in one currency affects the price of another, holding
the demand shocks in all other currencies constant. Estimating cross-multipliers for a panel
of N currencies is challenging due to correlated demand shocks, which limits the independent
variation needed to estimate the N2 cross-multipliers. Our approach maps cross-multipliers
to the risk exposures of the underlying currencies to traded FX factors. When intermediaries
accommodate a demand shock in one currency, they bear additional non-diversifiable risks,
as characterized by the traded FX factors. These risks affect the price of the traded FX
factors and, via the law of one price, alter the prices of other currencies that load on the
affected factors.

We uncover rich cross-substitution patterns among currencies, driven by variation in
factor loadings. Currencies exhibit demand substitution when they share the same sign of
loading to a factor and complementarity when they have opposite signs. For instance, we
find a large cross-multiplier between the Australian dollar (AUD) and the Canadian dollar
(CAD) because both currencies have the same sign of loadings on all three traded FX factors.
In contrast, the cross-multiplier between the Japanese yen (JPY) and either AUD or CAD
is small because JPY has the opposite loading on the Carry factor, allowing the currencies
to hedge each other by reducing intermediaries’ exposure to the Carry factor. Similarly,
while the euro (EUR) and JPY are both low-interest-rate currencies and act as “substitutes”
with respect to the Carry factor, they are on opposite sides of the Euro-Yen factor, making
them “complements” for that factor. As a result, we estimate only a modest cross-multiplier
between EUR and JPY.

Building on this logic, we compute cross-multipliers among FX and six non-FX asset
classes: U.S. Treasury bonds (Treasurys), corporate bonds, U.S. public equities, options,
CDS, and commodities. These asset classes meaningfully load on the traded FX factors,
which explain approximately 30% of their return variance. Consequently, a demand shock
in, say, corporate bonds generates non-diversifiable FX risks, as captured by the traded FX
factors. These risks affect the prices of traded FX factors and, in turn, the prices of U.S. eq-
uities and other assets that load on the affected factors. Demand shocks transmitted through
the traded FX factors have the smallest price effect on U.S. Treasurys, consistent with the
depth and liquidity of the Treasurys market. Notably, Treasurys alone exhibit negative
cross-multipliers with other assets, reflecting their “safe haven” status. In our framework,
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this safe haven property arises because Treasurys form the only asset class with a negative
loading on the Carry factor.

Our paper extends the literature on exchange rates by developing a novel approach to
quantify the price response of trading flows through risks. Beyond conveying information
(e.g., Evans and Lyons, 2002; Pasquariello, 2007; Froot and Ramadorai, 2008), trading
influences prices by increasing the non-diversifiable risks that marginal agents must bear.
Our key contribution is to recover risk factors that investors empirically deem important
by jointly analyzing trading and return data. This data-driven approach differs from and
complements the literature’s typical method of conjecturing relevant state variables based on
economic intuition, constructing factors from those variables, and then testing these factors’
cross-sectional pricing power.4 We find that the two most significant traded FX factors,
the Dollar and the Carry, are the same factors that price unconditional FX returns (Lustig,
Roussanov, and Verdelhan, 2011). Furthermore, we introduce a new Euro-Yen factor, which
is a priced risk both unconditionally over time and conditionally on demand shocks. We
also uncover new evidence of intermediaries’ time-varying exposure to these factors and
demonstrate that intermediaries’ risk-return trade-offs are pivotal for how risks are priced in
trading. Our findings complement existing research on priced risk factors in FX markets (e.g.,
Bansal and Dahlquist, 2000; Lustig and Verdelhan, 2007; Hassan and Mano, 2018; Korsaye,
Trojani, and Vedolin, 2023) and offer fresh insights into the role of trading-induced risks in
driving price co-movements across currencies and between FX and other asset markets (e.g.,
Jiang, Krishnamurthy, and Lustig, 2021; Camanho, Hau, and Rey, 2022; Chernov and Creal,
2023; Gourinchas, Ray, and Vayanos, 2024; Liao and Zhang, 2025).

Our paper also contributes to the broader literature on demand propagation across assets.
Estimating propagation among N assets using reduced-form regressions is impractical due
to the sheer number of parameters. To address this, the literature has primarily adopted two
structural approaches. One approach focuses on asset characteristics and ties demand propa-
gation to microfounded functional forms (e.g., Koijen and Yogo, 2019; Koijen and Yogo, 2020;
Bretscher, Schmid, Sen, and Sharma, 2022; Jiang, Richmond, and Zhang, 2024). The other
appeals to mean-variance optimization and links propagation to return covariances between
individual assets (e.g., Vayanos and Vila, 2021; Kodres and Pritsker, 2002; Pasquariello and
Vega, 2015; Davis, Kargar, and Li, 2023; Greenwood, Hanson, and Vayanos, 2023; Jansen,
Li, and Schmid, 2024). We offer a distinct alternative inspired by the arbitrage pricing theory
(APT) of Ross (1976): demand propagates through traded risk factors. This approach offers

4For example, Fama and French (1993) identify size and value as key state variables for determining
expected returns, sort stocks by these variables to build the size and value factors, and then show that these
factors price the cross-section of expected returns.
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three key advantages. First, asset-level propagation is determined by exposures to these risk
factors, allowing assets to be “complements” with respect to some factors but “substitutes”
with respect to others. Second, by allowing each factor to have a unique price sensitivity
to risk, shocks of different natures can propagate differently. Third, because the traded risk
factors capture non-diversifiable risks aggregated across assets, their price sensitivity to risk
reflects the “macro-multiplier” in the spirit of Gabaix and Koijen (2021). By working with
factors, we achieve dimension reduction in estimation grounded in arbitrage theory, and
bridge the factor-level “macro-multiplier” with the asset-level “micro-multiplier.”

More generally, our paper augments the intermediary asset pricing and microstructure
literatures, both of which emphasize intermediaries’ limited risk-bearing or balance-sheet
capacity as a driver of asset price responses to customers’ demand shocks (e.g., Ho and Stoll,
1981; Grossman and Miller, 1988; Gabaix and Maggiori, 2015; He and Krishnamurthy, 2017;
Kondor and Vayanos, 2019; Haddad and Muir, 2021; Du, Hébert, and Huber, 2023; Du,
Hébert, and Li, 2023). While we share this focus on intermediaries and the frictions they
face, our approach differs in emphasizing that intermediaries’ pricing decisions are shaped
by non-diversifiable risks aggregated across all assets, rather than analyzing the risks of
individual assets in isolation. In this sense, our perspective aligns with the foundational
insights of Markowitz (1952), Sharpe (1964), and Lintner (1965), where non-diversifiable
risks are the primary concern in asset price determination.

The next section presents our theoretical framework. Section 3 introduces the data source
and Section 4 identifies the traded FX factors. Section 5 examines the unconditional and
conditional pricing properties of the traded FX factors. Section 6 explores how these factors
propagate demand shocks across currencies and other asset classes. Section 7 concludes.

2 Theoretical Framework

This section begins by introducing the model setup. It then describes the construction of the
traded risk factors, the solution for these factors’ price sensitivity to trading-induced risks,
and the mapping from factor-level price sensitivity to currency-level cross-multipliers.

2.1 Model Setup

There are three periods: t = 0, t = 1, and t = 2; and there are N + 1 currencies, where
the last currency serves as the numeraire. Customers buy or sell any pair of the N + 1

currencies. These trades could be motivated by demand shocks (e.g., preference shocks) or
private information. All customer trades are accommodated by a mass µ of competitive
intermediaries. For n = 1, . . . , N , the return of currency n from time 0 to time 1 is rn,
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which is defined as the return from borrowing one unit of the numeraire at its risk-free rate,
converting it to currency n at time 0, investing at currency n’s risk-free rate from time 0 to
1, and then converting it back to the numeraire at time 1. We stack rn into an N × 1 vector
as r = (r1, r2, . . . , rN)

⊤.5 Similarly, Rn denotes the return of currency n between time 1 and
time 2, which we stack into an N × 1 vector R = (R1, R2, . . . , RN)

⊤. We assume there are
no redundant currencies, so the matrix var(r) has full rank, and we assume that the return
covariance structure remains stable over time, such that var(r) = var(R).6 Our goal is to
study the price response of customer demand shocks between time 0 to time 1, holding fixed
the trading between time 1 and time 2. We empirically map the interval between time 0 to
time 1 to a week. Time t = 2 represents the long term, where currency prices are no longer
affected by demand shocks between time 0 and time 1; reaching this stage may take months
in reality.

2.2 Factor Construction

We want to study trading-induced risks that intermediaries bear at the margin. We thus
aim to identify a few factors that maximally explain the non-diversifiable risks induced
by the aggregate trading flow. Using the U.S. dollar (USD) as the numeraire currency,
we first decompose all trades between time 0 and 1 into trades against USD, and express
the aggregate trading flow as f = (f1, f2, . . . , fN)

⊤, where fn is the net customer buying
flow for currency n against USD.7 For any given factor b1 = (b1,1, . . . , bN,1), where bn,1

represents the weight of currency n in this factor,8 currency n loads on the factor with
βn,1 = cov(rn,b⊤

1 r)/var(b⊤
1 r). When intermediaries accommodate a currency-level trading

flow, fn, they effectively bear a factor-level trading flow of size fnβn,1, along with other risks
uncorrelated with the factor. Given that there are N currencies, intermediaries can offset
the factor-level trading flow across different currencies, leaving a non-diversifiable factor-level
flow of amount9

q1 =
N∑

n=1

fnβn,1 = cov(f⊤r,b⊤
1 r)/var(b⊤

1 r). (1)

5Throughout this paper, bold font is used to denote matrices and vectors, and A⊤ represents the trans-
pose of A.

6All our theory holds if we instead assume the more general form var(r) = Lvar(R), for some positive
constant L.

7Specifically, if a customer buys currency n by selling currency m, we record it as a positive trading flow
for currency n from USD and a negative trading flow for currency m from USD. In Supplemental Appendix
A, we prove that the construction of traded risk factors remains invariant to the choice of the numeraire
currency.

8By definition, the weight of USD in this factor is −
∑N

n=1 bn,1.
9Our model assumes a representative intermediary who accommodates all customer trades. In practice,

such netting across currencies could also occur through interdealer trading.
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Note that for any given factor (as defined by the portfolio weights b1), the factor-level
trading flow q1 varies in proportion to the currency-level trading flow fn, and this relationship
depends on the factor being considered, as varying b1 changes the beta (βn,1) of a currency
to a factor.

We next specify the problem that pins down the most traded risk factors. Because
returns are defined per dollar, βn,1 measures the additional factor exposure in dollars from
one dollar invested in currency n. Thus, when summing the currency-level flows fn using
the beta weights in (1), these flows must be measured in dollars,10 and the resulting factor
flow q1 is likewise expressed in dollars. Multiplying q1 by the factor return variance var(b⊤

1 r)

changes the unit to trading-induced risks. As our goal is to maximally explain the trading-
induced risks, we construct the first factor b1 to maximize the variation of trading-induced
risks,

max
b1

var(q1var(b⊤
1 r))

var(b⊤
1 r)

= var(q1)var(b⊤
1 r). (2)

We normalize the variance of q1var(b⊤
1 r) by the factor return variance so that scaling b1

does not affect the objective function.11

We construct the second factor b2 by requiring that the second factor has an uncorrelated
return with the first and that the second factor maximizes the variation of trading-induced
risks,

max
b2

var(q2)var(b⊤
2 r) (3)

s.t. cov(b⊤
1 r,b

⊤
2 r) = 0,

where q2 = cov(f⊤r,b⊤
2 r)/var(b⊤

2 r).12

This sequential maximization procedure is similar to the standard principal component
analysis (PCA) on returns alone, a common asset-pricing approach used to identify factors
that maximally explain unconditional risks (Ross, 1976; Fama and French, 1993; Lustig,
Roussanov, and Verdelhan, 2011).13 However, our procedure extends the standard PCA

10For example, normalizing fn by the aggregate trading volume of the currency and then applying equation
(1), would result in an incorrect aggregation.

11Specifically, if b1 is doubled, βn,1 in equation (1) is halved, causing q1 to also halve, which leaves the
objective function unchanged.

12Because the returns of different factors are uncorrelated by construction, the univariate beta defined
here is equivalent to the multivariate beta.

13Specifically, the first factor b1 maximizes the variance of the factor return: var(b⊤
1 r). The second factor

b2, conditional on being uncorrelated with the first factor, i.e., cov(b⊤
1 r,b

⊤
2 r) = 0, again aims to maximize

the variance of the factor return: var(b⊤
2 r), and so on.
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framework by incorporating both trading and returns data to maximally explain conditional
trading-induced risks. Appendix A.1 provides details on solving for these factors through
eigenvalue decomposition. In theory, one can construct at most K factors, where K is the
rank of the matrix var(f). Empirically, a small number of factors are typically sufficient to
explain the majority of trading-induced risks.

Our procedure can also be interpreted as a risk-based extension of the standard PCA
on flows alone, an intuitive approach for analyzing trading data. Specifically, if the returns
of different currencies are i.i.d. (i.e., var(r) is proportional to the identity matrix), our
procedure becomes identical to the standard PCA on flows.14 Moreover, if the returns of
different currencies are independent but each currency n has its own return volatility σn,
our procedure reduces to the standard PCA on σnfn, the risk-weighted flows.15 The most
general form of the objective function (2) accommodates scenarios where different currencies
may exhibit arbitrary correlations.

2.3 Price Sensitivity to Trading-Induced Risks

Having identified the traded risk factors, we now derive the price sensitivity to trading-
induced risks of each factor through the portfolio optimization of a representative interme-
diary. Our model is kept deliberately simple to emphasize the relationship between trading
and asset prices. We assume that the mass µ of intermediaries have CARA preference.16

In addition to risk aversion, the only type of friction that the model features is possible
factor-specific frictions in accommodating risks, leading to possibly different factor-specific
risk-aversion, denoted by γk for factor k.17

The traded risk factors in Section 2.2 are constructed using observed, equilibrium trad-
ing flows and returns. As such, we have identified the factors with the largest amount of
trading-induced risks in equilibrium, which are priced partly due to changes in fundamen-
tals (e.g., the arrival of news, learning from trades) and partly due to intermediaries being
pushed against their risk-bearing capacity. Our goal is to compute the sensitivity of price
change to uninformed demand shocks. To achieve this, we examine the price response of hy-
pothetical and marginal demand shocks f̂1, . . . , f̂N , which occur between times 0 and 1 and
are uninformed about currency prices at time 2. Due to intermediaries’ limited risk-bearing

14Specifically, (2) simplifies to max{b1,1,b2,1,...,bN,1} var(
∑N

n=1 fnbn,1)/(
∑N

n=1 b
2
n,1).

15Specifically, (2) simplifies to max{g1,g2,...,gN} var(
∑N

n=1 σnfngn)/(
∑N

n=1 g
2
n), where gn is defined as

σnbn,1.
16We can re-cast the absolute risk aversion as a function of wealth to mimic a CRRA preference.
17In practice, not all intermediaries may be willing to accommodate risks in every factor. If some in-

termediaries choose not to absorb risks of a certain factor k, this would manifest as a higher effective risk
aversion, γk, in our model.
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capacity, the (percentage) price response of currency n at time 1 is

∆p̂n :=
Pn(f̂1, . . . , f̂N)− Pn(0, . . . , 0)

Pn(0, . . . , 0)
, (4)

where Pn(f̂1, . . . , f̂N) is the exchange rate of currency n (measured as the number of USD
per foreign currency) with demand shocks f̂1, f̂2, . . . , f̂N . Then, for factor k that holds $bn,k
of currency n against the USD, the price response is

∆pk =
N∑

n=1

bn,k∆p̂n. (5)

The factor-level demand shock is aggregated in the same way as equation (1),

q̂k =
N∑

n=1

βn,kf̂n. (6)

The equilibrium price responses are such that each intermediary finds it optimal to buy
yk = −q̂k/µ dollars of factor k. For each additional dollar of factor k purchased, intermedi-
aries bear an extra payoff risk of b⊤

k R at time 2. This factor is bought at the adjusted price
∆pk at time 1, which is compounded to time 2 by multiplying it by the USD gross risk-free
rate RF . Hence, the representative intermediary’s optimization problem reads

{−q̂1/µ, . . . ,−q̂K/µ} = arg max
{y1,...,yK}

E

[
− exp

(
−

K∑
k=1

γkyk(b
⊤
k R−RF∆pk)

)]
. (7)

Applying the first-order condition to (7) and using the assumption that var(r) = var(R),
Proposition 1 determines the equilibrium price response for each factor.

PROPOSITION 1 (Price sensitivity to trading-induced risks). Denoting λk =

γk/(µRF ), the price response of factor k is

∆pk = λkq̂kvar(b⊤
k r). (8)

The parameter λk is termed the “price sensitivity to trading-induced risks” of factor k,
or simply “price sensitivity to risks.” By equation (8), we can express λk as follows:

λk =
∆pk

q̂kvar(b⊤
k r)

. (9)
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Here, ∆pk represents the price response of factor k at time 1. The denominator, q̂kvar(b⊤
k r),

measures the change in the quantity of risk due to the marginal demand shock into the factor.
Consequently, λk captures the price compensation that intermediaries require for absorbing
the marginal increase in traded risk. This concept extends the canonical price of risk that
measures price compensation required for taking on an extra unit of unconditional risk. Note
that in our simple model, λk is not a function of intermediaries’ pre-existing holdings at time
1, as we do not model nonlinear constraints (e.g., position limits).

We highlight three features of the price sensitivity to risks λk. First, because the traded
risk factors have uncorrelated returns by construction, the equilibrium solution from (7)
implies that demand shocks q̂k affect only the price of factor k, without influencing any
other factors. Appendix A.2 provides a proof. Second, λk is invariant to scaling or sign
reversal of a factor. This highlights that, economically, λk ≈ γk/µ reflects the intermediaries’
risk-bearing capacity, or their per-capita risk aversion to that factor. While λk is linked
solely to γk and µ in our stylized model, the empirical estimate of λk may also reflect other
constraints that intermediaries face when accommodating trading-induced risks for factor k.
Calibrating to the estimated λk would require a more sophisticated macro-finance model that
incorporates these additional features, which is beyond the scope of this paper. Third, the
price sensitivity to risks is defined in terms of risks rather than securities, unlike the inverse
demand elasticity (∆P/P )/(∆Q/Q) commonly used in industrial organization. Although
quantities of securities are readily observable, in markets where marginal agents optimize
their portfolios to diversify risks, the quantities of risks are more relevant.

2.4 Cross-Multiplier

We now appeal to the law of one price and determine the cross-multiplier between individual
currencies by using factor-level price sensitivities to risks. Consider the scenario where
currency m experiences a $1 demand shock (a one-dollar change to f̂m), while customers’
demand shocks for all other currencies remain constant. First, as in equation (6), this
additional $1 demand shock for currency m would increase the demand shock q̂k to factor
k by an amount βm,k. Second, changes in factor-k demand shock affect its price by ∆pk =

λkvar(b⊤
k r) (Proposition 1). Finally, changes in factor-k price ∆pk affect currency-n price

∆p̂n through the law of one price, with the sensitivity being βn,k. Following this logic,
Proposition 2 computes the model-implied cross-multiplier. Appendix A.3 provides a proof.

PROPOSITION 2 (Cross-multiplier). The cross-multiplier between currencies n and m

is:
∂∆p̂n

∂f̂m
=

K∑
k=1

∂q̂k

∂f̂m
× ∂∆pk

∂q̂k
× ∂∆p̂n

∂∆pk
=

K∑
k=1

βm,k × λkvar(b⊤
k r)× βn,k. (10)
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The model-implied cross-multiplier has two features. First, the own-multiplier

∂∆p̂n

∂f̂n
=

K∑
k=1

β2
n,k × λkvar(b⊤

k r) (11)

is always positive as long as λk is positive. Positive λk indicates that intermediaries are
averse to bearing trading-induced risks rather than risk-seeking. On the other hand, the
cross-multiplier between two currencies could be negative, if the currencies have opposite
signs of beta loading to a factor, which reflects complementarity. We return to this point
empirically in Section 6.1.

Second, the cross-multiplier as channeled through traded risk factors is symmetric between
any two currencies n and m, as shown by

∂∆p̂n

∂f̂m
=

∂∆p̂m

∂f̂n
. (12)

This symmetry arises because
∂q̂k

∂f̂n
= βn,k =

∂∆p̂n
∂∆pk

. (13)

The first equality, relating currency to factors in terms of quantity, follows from our portfolio
theory (6), while the second equality, relating currency to factors in terms of price, results
from the law of one price. Both relationships are governed by the beta of currency n to
factor k, which gives rise to the symmetry.

3 Data

To identify traded risk factors, we need data on FX trading and returns. In this section, we
outline the various data sources that we use.

3.1 Trading Data

Our FX trading data come from the CLS Group (CLS), which provides settlement services
for FX trades conducted by its 72 settlement members, primarily large multinational banks.18

As the largest single source of FX execution data, CLS covers over 50% of global FX volumes.
We use daily aggregate FX order flow data from CLS, which includes the total value of

buy and sell orders between Banks and their customers in 17 currencies from September 2012
to December 2023. The currencies in our sample are: U.S. dollar (USD), Australian dollar

18A list of settlement members can be found at https://www.cls-group.com/communities/
settlement-members/.
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(AUD), Canadian dollar (CAD), Swiss frank (CHF), Danish kroner (DKK), Euro (EUR),
British pound (GBP), Hong Kong dollar (HKD), Israeli shekel (ISL), Japanese yen (JPY),
Korean won (KRW), Mexican peso (MXN), Norwegian kroner (NOK), New Zealand dollar
(NZD), Swedish kroner (SEK), Singaporean dollar (SGD), and South African rand (ZAR).
All trades involve Banks as one counterparty, including trades by bank-affiliated dealers and
hedge funds transacting through prime brokers. We interpret Banks’ trading as representing
the activities of the specialist intermediary in our model. Counterparties to Banks are
grouped into three categories: Funds (e.g., mutual funds, pension funds, sovereign wealth
funds), Non-bank Financials (e.g., insurance companies, clearing houses), and Corporates.

To measure the total FX risk borne by intermediaries, we are the first to jointly analyze
the CLS flows data on FX spot (e.g. Ranaldo and Somogyi, 2021; Roussanov and Wang,
2023) alongside data on FX forwards and swaps.19 Due to the pronounced negative corre-
lation between flows into spot versus forward and swap, excluding either can underestimate
the price sensitivity to risks (see Supplemental Appendix B). The CLS forward and swap
data are organized by maturity buckets. We estimate FX spot exposure from these future-
settled contracts by discounting the notional using forward rates.20 Aggregating across spot,
forward, and swap, we construct the USD-valued total daily net customer inflow for each
currency.

To align with our instruments, we analyze trading and return at the weekly frequency.
Weekly flows are calculated by summing daily flows from Thursday to the following Wednes-
day. Our final trading data is a panel spanning 2012-09-06 to 2023-12-31, consisting of weekly
net inflow into 16 non-USD currencies, measured in USD, across spot, forward, and swap
transactions.

3.2 Return Data

We obtain the forward and spot data for the 16 non-USD currencies in our sample from
Bloomberg. All prices are recorded at the London close, consistent with CLS trading data,
which also follow London FX market hours.

We define the weekly currency return as the result of borrowing USD at the US risk-free
rate, converting to foreign currency at the spot exchange rate, earning the foreign risk-free
rate, and converting back to USD at the future spot rate. For currency n from week t to

19Conceptually, FX swaps should not expose intermediaries to currency risk, as the spot and forward
legs offset each other. However, residual currency risk may remain. Our results are effectively unchanged if
swaps are excluded.

20Specifically, we use the 1-week forward rate for contracts maturing in 1-7 days, the 1-month forward
rate for contracts maturing in 8-35 days, the 3-month forward rate for contracts maturing in 36-95 days,
and the 1-year forward rate for contracts maturing in more than 96 days. The choice for these rates reflects
bucket maturity ranges and forward contract liquidity.
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t + 1, we define rt+1,n = st+1,n − st,n + it,n − it,USD − xt,n = st+1,n − ft,n, where s is the
log spot rate, f is the log forward rate, i is the net risk-free rate, and x is the deviation
from the covered interest-rate parity (CIP). Exchange rates are defined as USD per one unit
of foreign currency, so a higher s corresponds to USD depreciation. Our currency return
includes the CIP deviation, xt,n = ft,n − st,n − it,USD + it,n, to more accurately reflect the
actual return that intermediaries have when absorbing customer flows, including inventory
costs from balance sheet constraints.

3.3 Other Data

We collect sovereign bond auction data to instrument for FX demand shocks. Specifically,
we source announcement information on auctions of bonds with maturities of one year or
longer from government websites in the U.S., Australia, Canada, France, Germany, Italy,
Japan, and the U.K.

To construct excess returns in six non-FX asset classes, we use the following data. For
credit default swaps (CDS), we obtain five Markit indices from Bloomberg (North America
investment grade and high yield, Europe main and crossover, and Emerging Market), with
returns defined from the seller’s perspective. For commodities, we use six Bloomberg com-
modity futures return indices (energy, grains, industrial metals, livestock, precious metal,
and softs). For corporate bonds, we use five Bloomberg indices on U.S. corporate bonds
by credit rating (Aa, A, Baa, high yield; excluding AAA to avoid collinearity with the
risk-free rate). For equities, we use the “Market” return from Ken French’s website, which
aggregates value-weighted returns of U.S. publicly traded firms in CRSP. For options, we
calculate leverage-adjusted option portfolio returns on S&P 500 call and put prices from
OptionMetrics, following Constantinides, Jackwerth, and Savov (2013). For US Treasury
bonds, we use yields of the six maturity-sorted “Fama Bond Portfolios” from CRSP, exclud-
ing Treasury bills due to correlation with the risk-free rate. Finally, we use the 1-month U.S.
Libor as a proxy for the risk-free rate.

The Bloomberg CDS data begin in 2007, OptionMetrics data end in December 2022, and
all other asset classes data span January 2000 to December 2023.

4 Traded Risk Factors in FX

In this section, we identify the most important traded FX factors from data. We first find
that three risk factors account for most of the non-diversifiable risks induced by FX trading.
We then interpret these factors as the Dollar, the Carry, and the Euro-Yen. Finally, we show
that these factors cannot be obtained by the standard PCA on returns or flows alone.
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4.1 Baseline Traded FX Factors

Our objective is to identify risk factors that capture the effect of FX trading on currency
prices in the cross-section. To this end, we focus on factors that maximally explain trading-
induced risks. Using the procedure detailed in Section 2.2, we derive the traded FX factors
from weekly net flows (f) and log returns (r) of 16 non-USD currencies.21 The three factors
that explain the most amount of trading-induced risk are reported in Table 1. Each column
of Table 1 represents a factor, and the component values are the currency weights in this
factor.22 For example, in Factor 1, for every $1 bought, $0.15-worth of CAD and $0.5-worth
of EUR are sold.23 Because the identified risk factors are traded, they place greater weight
on widely traded currencies. Notably, six developed economy currencies — AUD, CAD,
CHF, EUR, GBP, and JPY — have consistently high weights across the top three factors;
they are highlighted in red along with USD. Of the total trading-induced non-diversifiable
risks,

∑K
k=1 var(qk)var(b⊤

k r), the top three traded FX factors individually account for 65%,
16%, and 9%, respectively. Jointly, these three factors explain approximately 90% of the
risks intermediaries bear when accommodating trading flows.24

4.2 Interpretation of Traded FX Factors

To better understand the risks captured, we conjecture and verify that the top three traded
FX factors represent the Dollar, the Carry, and the Euro-Yen, respectively. Factor 1 in
Table 1 assigns negative weights to all non-USD currencies, resembling the proverbial Dollar
portfolio that shorts all non-USD currencies to bet on the USD exchange rate. We there-
fore propose a traded Dollar factor that goes long in USD and shorts the six most traded
currencies (AUD, CAD, CHF, EUR, GBP, and JPY) in equal weights. Factor 2 has posi-
tive weights on high-interest-rate currencies (e.g., AUD, CAD, GBP) and negative weights
on low-interest-rate currencies (e.g., JPY, CHF, EUR), consistent with the proverbial Carry
portfolio that exploits violations of uncovered interest-rate parity (UIP). We propose a traded
Carry factor that goes long in AUD, CAD, and GBP, and shorts CHF, EUR, and JPY, all in
equal weights. Factor 3 features a large positive weight on EUR and a large negative weight
on JPY, motivating a traded Euro-Yen factor that goes long in EUR and shorts JPY in

21We use aggregate flows across all customer types to identify total trading-induced risks from the inter-
mediaries’ perspective. Trades from different customers may carry different informational content but pose
the same balance-sheet or inventory risk.

22The portfolio weight of USD is the negative sum of the weights of all other currencies.
23To facilitate comparison, we have scaled such that factor 1 has a weight of 1 for USD, factor 2 has all

positive weights sum to 1 and all negative weights sum to -1, and factor 3 has a weight of -1 for JPY.
24The traded FX factors are robust to sample period changes. Table SA3 in the Supplemental Appendix

shows high correlations in returns and flows between factors from the full sample and pre-/post-2020 sub-
samples: nearing 1 for the first factor and exceeding 0.8 for the other two.
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Table 1: Top 3 Traded FX Factors

Currency Factor 1 Factor 2 Factor 3

AUD -0.08 0.14 -0.08
CAD -0.15 0.56 -0.87
CHF -0.03 -0.07 -0.02
DKK -0.01 0 0.02
EUR -0.5 -0.43 1.16
GBP -0.11 0.18 0.09
HKD 0 -0.01 0.02
ILS 0 0 0
JPY -0.07 -0.49 -1
KRW -0.01 0.01 -0.01
MXN -0.01 0.02 -0.03
NOK -0.01 0.02 -0.01
NZD -0.01 0.02 -0.01
SEK -0.01 0.01 -0.01
SGD -0.01 0 0.02
ZAR -0.01 0.01 -0.01
USD 1 0.03 0.74

Var explained 65% 16% 9%

Notes: This table presents the portfolio weights of the top 3 traded FX factors, constructed following the
procedure in Section 2.2. The return and flow data for 16 non-USD currencies are weekly from September 2012
to December 2023. The portfolio weight of USD is computed as the negative sum of the weights of all other
currencies.

equal weights. The rationale is that, because EUR and JPY are traded in the same direction
in both Dollar and Carry factors, these factors do not capture the bilateral trading flows
between the Euro area and Japan, two of the world’s largest economies.

These proposed factors are economically meaningful but may be correlated. To address
this, we apply the procedure described in Section 2.2 to orthogonalize them. In particular,
this process transforms the proposed EUR-JPY pair (long EUR, short JPY) into the Euro-
Yen factor, which is uncorrelated with the Dollar and Carry factors. In other words, the
Euro-Yen factor captures the portion of non-diversifiable risk that intermediaries bear when
absorbing EUR-JPY pair trading, after hedging out exposures to the Dollar and Carry fac-
tors. Empirically, for every dollar traded in the EUR-JPY pair, 13% of the risk is attributed
to the Dollar factor, 25% to the Carry factor, and 62% to the Euro-Yen factor.

The data support our interpretation of the traded FX factors. Using data on individual
currencies, we construct factor returns and factor flows. Table 2 shows the correlation
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Table 2: Correlation between Return and Flow for Baseline PC Factors versus
for Proposed Economic Factors

Factor 1 Factor 2 Factor 3

Return 0.98 0.95 0.92
Flow 1.00 0.99 0.95

Var explained by
Economic Factors 63% 15% 8%

Notes: This table shows the correlation between return and flow for the baseline traded FX factors in
Table 1 (“PC Factors”) and for the traded FX factors constructed from the proposed factor weights of
the Dollar, the Carry, and the Euro-Yen (“Economic Factors”). It also shows the fraction of trading-
induced risks explained by the Economic Factors.

between returns and flows of the baseline factors (“PC Factors”) from Table 1 and returns
and flows of the factors constructed from the proposed Dollar, Carry, and Euro-Yen weights
(“Economic Factors”). The correlations are nearly 1 for both returns and flows across all
three factors. Together, the three Economic Factors explain about 86% of trading-induced
non-diversifiable risks, closely matching the risks accounted for by the PC Factors. Given this
striking similarity and to avoid potential in-sample overfitting concerns with PC Factors, we
focus on analyzing the more interpretable Economic Factors for the remainder of the paper.

Panel (a) of Figure 1 plots the cumulative flows to the three traded FX factors.25 During
our sample period, customers purchased approximately $1 trillion of the Dollar factor from
intermediaries, primarily after the 2020 COVID crisis. This provision of USD by intermedi-
aries likely reflects USD deposits or wholesale funding made available by (dealer-affiliated)
banks (Du and Huber, 2024), as some intermediaries, especially dealers, may not be able
to maintain a sustained inventory imbalance. For the Carry factors, customers initially re-
frained from large directional bets but began selling off the Carry factor post-2022. As a
result, intermediaries including dealers and hedge funds accumulated $0.8 trillion in Carry
trade exposure between 2012 and 2023. Finally, customers sold the Euro-Yen factor up until
the 2020 COVID crisis, after which they started repurchasing some, but not all, positions.
This left the intermediaries with a net positive position in the Euro-Yen factor throughout
the sample period. As JPY acts as a “funding currency” (negative weight) in both the Carry
and Euro-Yen factors, our analysis highlights that the unwinding of intermediaries’ short
JPY positions cannot solely be attributed to the Carry trade.

Panel (b) of Figure 1 plots the cumulative returns of the three factors over our sample
25Figure SA2 in the Supplemental Appendix provides a breakdown of factor flows by customer type.
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Figure 1: Cumulative Flow and Return of Top 3 Traded FX Factors

(a) Cumulative Flow

(b) Cumulative Return

Notes: This figure displays the cumulative flows and returns of the top three traded FX factors between
September 2012 and December 2023. Flows are measured from the perspective of customer purchases
(intermediary sales). For instance, the figure indicates that customers bought approximately $1 trillion of
the Dollar factor from intermediaries during this period.

period. We observe that all three factors enjoy positive returns, including the Euro-Yen
factor. We formally investigate the unconditional risk premium of these factors in Section
5.1.

4.3 Standard PCA on Returns or Flows Fails to Identify Traded Risk Factors

We demonstrate that a standard PCA applied solely to returns or flows fails to identify
the traded FX factors. The results underscore the empirical value of using our approach to
jointly analyze returns and flows.
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Table 3: Top 3 PCs from FX Returns or Flows

Currency Return PCA Flow PCA
PC 1 PC 2 PC 3 PC 1 PC 2 PC 3

AUD -0.08 0.04 0.27 -0.03 0.03 0.12
CAD -0.05 0.05 0.32 -0.04 1 -0.06
CHF -0.05 -0.21 -0.51 -0.01 -0.02 -0.06
DKK -0.06 -0.15 -0.12 0 0 0.01
EUR -0.06 -0.15 -0.13 -1 -0.03 0.03
GBP -0.07 -0.08 0.47 -0.02 -0.01 0.26
HKD 0 0 0 0 -0.02 0
ILS -0.04 -0.03 0.24 0 -0.01 0
JPY -0.03 -0.17 -1 -0.04 -0.06 -0.95
KRW -0.06 0.02 -0.15 0 0.01 0
MXN -0.08 0.22 0.71 -0.01 0.01 0
NOK -0.1 -0.05 0.72 0 0.01 0.01
NZD -0.08 0.01 0.13 -0.01 0.01 0.01
SEK -0.08 -0.13 0.22 0.01 0 0
SGD -0.04 -0.03 -0.12 -0.01 -0.01 0.01
ZAR -0.11 0.29 -1.35 -0.01 0 0.01
USD 1 0.37 0.29 1.17 -0.92 0.62

Notes: The first three columns display the portfolio weights for the first three principal com-
ponents from a return PCA, while the second three columns show those from a flow PCA. The
analysis uses weekly data for 16 non-USD currencies spanning September 2012 to December
2023. The USD portfolio weight is calculated as the negative sum of the weights of all other
currencies.

The first three columns of Table 3 show the portfolio weights for the first three principal
components of a standard PCA applied to returns.26 The first factor resembles a Dollar
factor, with negative loadings on all currencies. The second factor assigns large positive
weights to some high-interest-rate currencies such as ZAR and MXN, and large negative
weights to some low-interest-rate currencies like CHF, JPY, and EUR. However, it also
assigns very small positive weights to other high-interest-rate currencies like AUD and NZD
and even a negative weight to GBP and NOK.27 The third factor lacks a clear economic
interpretation. In contrast, our approach of jointly analyzing flows and returns yields a
significant traded risk factor that is unambiguously the Carry and reveals an economically

26The eigenvectors from a return PCA represent individual currencies’ betas to the factors. We convert
these betas into portfolio weights using the pseudoinverse of the beta matrix, following the factor-mimicking
portfolio approach of Fama and MacBeth (1973).

27Lustig, Roussanov, and Verdelhan (2011) identify the Carry factor from the second principal component
after sorting currencies into six portfolios based on interest rate levels.
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Table 4: Unconditional Risk Premium

Panel A: Sep 2012 to Dec 2023
Dollar Carry Euro-Yen

Mean return (annualized %) 2.38 2.15 5.26
Sharpe ratio (annualized) 0.35 0.26 0.56
Fama-MacBeth premium (annualized %) 2.42 3.34 3.58
t-stats (1.15) (1.22) (1.12)

Panel B: Jan 2000 to Dec 2023
Dollar Carry Euro-Yen

Mean return (annualized %) -0.16 2.09 1.99
Sharpe ratio (annualized) -0.02 0.23 0.20
Fama-MacBeth premium (annualized %) -0.07 3.02 1.00
t-stats (-0.04) (1.41) (0.40)

Notes: This table presents the annualized mean return and Sharpe ratio of the three
traded FX factors. Additionally, it reports the Fama-MacBeth factor premium along
with t-statistics calculated using Shanken-corrected standard errors. Panel A is based
on weekly returns from September 2012 to December 2023, while Panel B uses weekly
returns from January 2000 to December 2023.

meaningful Euro-Yen factor.
The next three columns of Table 3 report the portfolio weights for the first three prin-

cipal components of a standard PCA applied to flows. The resulting portfolios from this
approach primarily allocate weight to a single major currency. For instance, the first factor
assigns a portfolio weight of -1 to EUR and 0 to all other non-USD currencies, reflecting
that EUR/USD is the most actively traded pair. The second and third principal components
correspond to the CAD/USD and JPY/USD pairs, respectively. This outcome occurs be-
cause the flow PCA identifies portfolios based solely on the largest trading volumes, entirely
overlooking the strong factor structure in returns.

5 Pricing Properties of Traded FX Factors

In this section, we study the traded FX factors’ unconditional risk premium and their price
sensitivity to trading-induced risks.

5.1 Unconditional Risk Premium

Panel A of Table 4 reports the annualized mean returns and Sharpe ratios of the three traded
FX factors based on weekly returns from September 2012 to December 2023. Notably, the
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newly proposed Euro-Yen factor achieves an annualized return exceeding 5% and a Sharpe
ratio of 0.56, both meaningfully higher than those of the other two factors. To evaluate
the cross-sectional pricing power of these factors, we estimate the Fama-MacBeth factor
premia.28 The Fama-MacBeth premia of the three factors are similar to their mean returns
estimated from the time series, though we caution that the estimated Fama-MacBeth premia
are not statistically significant, which may partly reflect that the portfolios are static and
not conditionally rebalanced as in Lustig, Roussanov, and Verdelhan (2011).

Our sample period begins in September 2012 due to the availability of CLS data. To
further explore unconditional risk premia, we extend the sample to start in 2000 (introduction
of the Euro) and report the results in Panel B. In this longer sample, the Euro-Yen factor
exhibits a time-series mean return and Sharpe ratio comparable to the Carry factor. In the
cross-section, the Carry factor demonstrates considerably stronger pricing power than the
other two factors.

5.2 Price Sensitivity to Trading-Induced Risks

We aim to estimate λk, the price sensitivity to trading-induced risks of traded FX factor k in
equation (8). Because the traded FX factors are constructed to have uncorrelated returns,
we use Proposition 1 to estimate λk factor-by-factor without worrying about cross-factor
substitution. However, for each factor, we must instrument for the unobserved demand
shocks that are orthogonal to changes in fundamentals. Specifically, we regress each factor’s
risk-adjusted returns29 on its instrumented weekly flows, q̂k,t:

rk,t/var(rk,t) = λkq̂k,t + ϵk,t, where (14)

qk,t = θkzk,t + ek,t, (15)

cov(zk,t, ϵk,t) = 0. (16)

The instruments (zk) for the observed factor flows (qk) must be both relevant (equa-
tion (15)) and valid (equation (16)). We propose sovereign bond auction announcements
as instruments.30 Government entities, such as the U.S. Treasury, periodically auction off
long-term debt obligations, e.g., U.S. Treasury notes and bonds. Foreign investors actively
participate in these auctions; for instance, they directly purchased on average 14% of U.S.

28We follow the Fama-MacBeth two-step procedure: first, time-series regressions of each currency’s return
on factor returns estimate betas; second, cross-sectional regressions of average currency returns on these betas
(excluding the constant) recover the factor premium. Standard errors are corrected following Shanken (1992).

29Each factor’s weekly observed return rk,t is normalized by its annualized return variance, var(rk,t), so
the regression coefficient estimates the price sensitivity to risk λk, as defined in Proposition 1.

30We focus on auctions for securities with maturities of longer than a year, as short-term securities are
typically bought by domestic investors such as money market funds.
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Treasury notes and bonds sold at auctions between September 2012 and December 2023.31

Auction announcements prompt foreign investors to exchange domestic currencies for local
currencies, making these instruments relevant.

We also argue that the instruments are valid. First, auction announcements are plausibly
exogenous to FX trading because auctions follow strong fiscal cyclicality and are largely
predetermined. For example, the U.S. Treasury Borrowing Advisory Committee (TBAC)
issues two-quarter-ahead recommendations on debt issuance for upcoming auctions. Actual
issuance of long-term debt (maturities of longer than a year) rarely deviates from these
recommendations (Rigon, 2024).32 Second, auction announcements plausibly satisfy the
exclusion restriction that their effect on exchange rates arises solely through FX trading. One
concern is that announcements might affect FX by changing fundamentals (ϵk,t), but because
auctions are heavily forward-guided, announcements likely contain limited new information.
Another concern is that auction announcements might induce excess bond trading, affecting
bond prices and spilling over to FX. However, empirically, Wachtel and Young (1990) find
that while Treasury auction results move bond yield, the announcements have no detectable
effect. Thus, any impact on FX is likely driven solely by announcement-induced FX demand
shocks.

To validate that our instruments generate genuine demand shocks, we test whether the
resulting price responses are temporary and revert over time. As discussed in Section 2,
true demand shocks move currency prices initially (at time 1) but do not persist (at time
2). Figure SA3 in the Supplemental Appendix confirms that the contemporaneous price
responses of all three factors fully revert within a month.

As the traded FX factors place weights on multiple currencies, we consider sovereign
auction announcements from a panel of countries. Specifically, U.S. Treasury auction an-
nouncements instrument demand shocks to the Dollar factor; Australian, Canadian, British,
and Japanese government bond auction announcements instrument shocks to the Carry fac-
tor, and Euro-Area government bond auctions (aggregating German, French, and Italian
auctions) instrument for the Euro-Yen factor. For each auction, we aggregate the offered
amount across all announcements in a week, consistent with FX trading flows. To instrument
for factor flows in week t, we use same-week announcements for the Dollar and Carry factors
and announcements from weeks t − 1 and t for the Euro-Yen factor. This longer window
accounts for potential delays in auction-induced currency conversion, as Germany, France,
and Italy do not allow direct bids from foreign investors. Finally, we remove any linear trend

31This 14% excludes foreign purchases made indirectly through U.S. investment funds and dealers, so the
actual figure may be higher.

32Similarly, Germany’s Finance Agency releases an annual auction calendar each December, specifying
target amounts for each auction.
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Table 5: Estimated Price Sensitivity to Trading-Induced Risks

Dollar Carry Euro-Yen
OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

Factor flow 0.072∗∗∗ 0.107∗∗∗ 0.132∗∗∗ 0.138∗∗ 0.139∗∗∗ 0.335∗
(0.009) (0.037) (0.018) (0.064) (0.021) (0.195)

Response per $B (bps) 3.4 5.0 8.9 9.3 12.2 29.3
1st stage F-stat 24.8 6.5 3.8
Anderson-Rubin CI (0.01, 2.39) (0.09, 1.91)
Observations 590 386 590 228 590 560

Notes: This table presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors, based on
regression (14). The response of factor prices to demand shocks, measured per billion dollars, is calculated as
the product of λk and the annualized return variance. The IV regressions report the first-stage heteroscedas-
ticity and autocorrelation consistent (HAC) effective F-statistics and the Anderson-Rubin confidence intervals
at the 90% confidence level. The estimation period spans September 2012 to December 2023, excluding the
first half of 2020. Newey-West standard errors are reported in parentheses, where the bandwidth is chosen by
the Newey and West (1994) selection procedure. *p <.1; **p <.05; ***p <.01.

in auction sizes over time.
Table 5 presents the λk estimation results for the Dollar, Carry, and Euro-Yen factors.

For all three factors, the estimated price sensitivity to trading-induced risks is positive and
statistically significant. Recall that the regression (14) normalizes each factor’s return by
its variance. As a result, the estimated λk captures the price response to one unit of risk
induced by $1 billion of factor flow and is directly comparable across factors. Both OLS and
IV estimates show that the price sensitivity to risks is the smallest for the Dollar, higher for
the Carry, and highest for the Euro-Yen. This indicates that intermediaries bear marginal
risks most effectively in the Dollar factor, with their risk-bearing capacity progressively lower
for the Carry and the Euro-Yen. Viewed through Proposition 1, the cross-factor variation
in price sensitivity to risks may reflect differences in available arbitrage capital across risk
factors, with lesser-known factors like Euro-Yen attracting less arbitrage capital.33 The
OLS estimates are slightly smaller than the IV estimates, reflecting the instrument’s role
in mitigating bias from the correlation between information-driven price changes ϵk,t and
contemporaneous customer flows qk. This correlation is negative because customers trade
against fundamentals: they buy when news causes a currency to depreciate and sell when
it appreciates. Such behavior is consistent with the profitability of momentum strategies in

33The annualized volatility of customer flows is $85 billion for the Dollar factor, $34 billion for the Carry
factor, and $22 billion for the Euro-Yen factor.
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FX (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012).34

To compare the magnitude of our estimated price sensitivity to risks with the literature,
we multiply each factor’s λk by its return variance to calculate the factor-level price response
per billion of demand shocks, as shown in the second row of Table 5. A $1 billion demand
shock increases the prices of the Dollar, Carry, and Euro-Yen factors by 5, 9, and 29 basis
points, respectively.35 These price responses are large compared to U.S. equities, where a $1
billion demand shock to the entire U.S. stock market raises the aggregate price by about 1.7
bps (Gabaix and Koijen, 2021).36 We think that the supply of FX arbitrage capital is likely
limited due to the specialized nature of the FX market, where only sophisticated participants
like bank dealers and hedge funds absorb demand shocks.37 This may seem counterintuitive
given the large turnover in FX, but up to 75% of trades occur between intermediaries (BIS,
2022), suggesting that the arbitrage capital available to absorb shocks is much smaller than
the total turnover.38

Finally, the precision of IV estimation depends on the strength of the instrument. The
heteroscedasticity and autocorrelation consistent (HAC) effective F-statistics for the Dollar,
the Carry, and the Euro-Yen factors are 24.8, 6.5, and 3.8, respectively. The effective F-
statistics for the Carry and the Euro-Yen are below the rule-of-the-thumb threshold of 10.
To assess the implications of potentially weak instruments on IV inference, we compute the
Anderson-Rubin confidence interval, which has the correct coverage regardless of the strength
of the instrument (Andrews, Stock, and Sun, 2019). For both the Carry and the Euro-Yen,
the Anderson-Rubin confidence interval is bounded away from zero, but is very wide in the
positive direction. In other words, we are reasonably confident that the price sensitivity to
risks is not zero but much less certain that the true value is not larger. A larger estimate
would mean an even greater price sensitivity to risk.

34In a rational market, prices would adjust to fundamental news without trading (Milgrom and Stokey,
1982). However, when customers buy in response to negative fundamental news, prices under-react, leading
to subsequent price drift and generating momentum.

35In a dynamic setting, the persistence of demand shocks can influence price response, as intermediaries
anticipate future demand (e.g., Campbell and Kyle, 1993; Wang, 1993; Jansen, Li, and Schmid, 2024). Our
estimates reflect the average level of persistence over the sample period.

36Gabaix and Koijen (2021) find that a 1% greater demand shock in the entire US stock market increases
price by 5%. Given an average market capitalization of $31.7 trillion between 2012 and 2022, a $1 billion
demand shock raises the price of the market factor by 1.7 bps over our sample period.

37The limited FX arbitrage capital may also reflect slow-moving capital and the fact that our price
sensitivity to risks is estimated based on a weekly horizon, shorter than the monthly or quarterly horizons
typically considered in the literature. Asset markets tend to be more inelastic over shorter horizons as
long-term investors are slower to react to price changes and provide arbitrage capital (Duffie, 2010).

38Of the FX trades accounted for in the BIS Triennial Central Bank Survey, 46% are between reporting
dealers, 22% with non-reporting dealers, and 7% with hedge funds, all of which are intermediaries in our
model and captured in Banks in the data.
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5.3 Time-Varying λ and the Role of Risk

Our representative intermediary framework posits that price responses to trading stem from
intermediaries’ sensitivity to risk. In the previous subsection, we discussed patterns in the
estimated λ consistent with this view — for instance, specialization may limit arbitrage
capital and risk-bearing capacity, resulting in larger price responses. In this subsection,
we seek more direct evidence that risk drives observed price responses to trading. Specif-
ically, we examine whether λ depends on time-varying investment opportunities that alter
intermediaries’ risk-return trade-off.

We consider two proxies for intermediaries’ investment opportunity sets. First, we use
intermediary equity returns to capture the attractiveness of future investment opportunities,
as public equity prices reflect expectations of future profitability.39 Second, we use deviations
from covered interest-rate parity (CIP) to capture the attractiveness of present investment
opportunities, as such deviations indicate intermediaries’ inability to exploit known profitable
trades.40

Table 6 presents potential determinants of the Dollar factor’s weekly return.41 Column
(1) suggests that the Dollar factor reflects variations in intermediary equity returns. How-
ever, Column (2) clarifies that intermediary equity returns do not directly affect the Dollar’s
return. Instead, they influence λ, consistent with a risk-based view of price response: when
future investment opportunities are plentiful, intermediaries’ effective risk aversion dimin-
ishes, reducing the price response of absorbing demand shocks (instrumented using U.S.
Treasury auction announcements). The relevant future investment opportunity sets are spe-
cific to intermediaries, as Columns (3) and (4) show that broader stock market returns have
no comparable effect on λ. Conceptually, intermediaries’ current opportunity sets may also
affect price response: when these opportunities are highly attractive, intermediaries may be
constrained from fully capitalizing on them, resulting in higher effective risk aversion and
lower risk-bearing capacity. Empirically, the effects of such constraints, proxied by CIP de-
viations, are directionally consistent with the risk-return trade-off but, as shown in Column
(6), not statistically significant.

39Following He, Kelly, and Manela (2017), we construct the value-weighted weekly return of primary
dealers’ bank holding companies. This series is highly correlated (0.95) with the KBW NASDAQ bank index
over our sample period and is equivalent to the intermediary capital ratio shock (0.98 correlation) in He,
Kelly, and Manela (2017).

40We calculate the weekly average cross-currency basis using the AUD-JPY currency pair and 3-month
IBOR.

41We focus on the state-dependency of the Dollar factor’s λ because it is the most important traded FX
factor, and its flow instrument has the highest statistical power.
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Table 6: Time-Varying λ for the Dollar Factor

Weekly Return of Dollar Factor
(1) (2) (3) (4) (5) (6)

Intermed. ret -0.490∗∗∗ -0.109
(0.119) (0.204)

Flow × Intermed. ret -0.091∗∗∗
(0.033)

S&P ret -0.148 -0.077
(0.096) (0.314)

Flow × S&P ret 0.006
(0.074)

CIP deviation 0.081 0.182
(0.060) (0.177)

Flow × CIP deviation 0.063
(0.129)

Factor flow 0.096∗∗∗ 0.106∗∗∗ 0.160∗
(0.037) (0.040) (0.093)

Observations 559 385 559 385 559 385

Notes: This table reports the IV-estimated time-varying λ for the Dollar factor. “Interm.
ret” is the value-weighted weekly equity return of primary dealers’ bank holding company.
“S&P ret” is the weekly return of the S&P 500 index. “CIP deviation” is measured by
the weekly average AUD-JPY 3-month IBOR cross-currency basis. All three variables
are demeaned and standardized. All factor flows are instrumented with U.S. Treasury
auction announcements. Newey-West standard errors are reported in parentheses, where
the bandwidth is chosen by the Newey and West (1994) selection procedure. *p <.1; **p
<.05; ***p <.01.

6 Cross-Currency and Cross-Asset-Class Multiplier

In this section, we use the traded FX factors’ estimated price sensitivity to risks to study
the propagation of demand shocks among currencies and asset classes. We quantify demand
propagation with cross-multipliers: the effect of a demand shock in one asset on the price of
another, holding all other demand shocks constant.

6.1 Cross-Currency Multiplier

For a traded FX factor to affect currency-level cross-multipliers, the currencies must load
on the factor. Figure 2 demonstrates the relevance of the traded FX factors in explaining
individual currency returns. Regressing currency-level returns on the returns of the Dollar,
the Carry, and the Euro-Yen factors in the time series, we plot the marginal R2 attributed
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Figure 2: Decomposition of Currency Returns Explained by Traded FX Factors

Notes: This figure plots the R2 of regressing currency-level returns against the returns of the Dollar, the
Carry, and the Euro-Yen factors in the time series. It plots the marginal R2 values attributed to each factor
and labels the total R2. The positive and negative signs illustrate the direction of the beta loadings.

to each factor and indicate the direction of the beta loadings.42 Together, the three factors
explain between 69% and 94% of individual currency returns.

The decomposition in Figure 2 provides a framework to analyze the risk implied in trading
demand shocks. For instance, when a customer buys $1 of AUD from intermediaries, Figure
2 shows that intermediaries attribute 60% of the total risk to the Dollar factor, 10% each
to the Carry and Euro-Yen factors, and 20% to idiosyncratic risk unexplained by the three
factors. The direction of factor loadings further reveals that intermediaries perceive the
customer’s $1 purchase (and their $1 sale) of AUD as the customer selling the Dollar and
Euro-Yen factors while buying the Carry factor.

Combining the information in Figure 2 with the IV estimated price sensitivity to risks λk,
we compute the cross-currency multipliers according to Proposition 2 and report the results
in Table 7. For clarity, we have arranged the six major currencies (AUD, CAD, GBP, CHF,
EUR, JPY) in the upper left quadrant, followed by the other ten currencies in the sample.
Each entry shows the price response in one row (column) currency, in basis points, to a $1
billion trading demand shock in the corresponding column (row) currency. For instance, the
entry of 7.9 in the first row and second column indicates that a $1 billion trading demand
shock to the CAD (AUD) raises the price of AUD (CAD) by 7.9 bps (in percentage terms),
holding the trading demand shocks in all other currencies equal. Because the model-implied
cross-multiplier is symmetric, we report only the upper half. The diagonal entries represent

42Because the returns of different factors are uncorrelated by construction, the regression R2 from each
factor is additive.
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each currency’s own multiplier. As USD is the numeraire, the own multiplier is also the
currency’s cross-multiplier with USD.

Table 7 reveals several interesting patterns of cross-currency multipliers. First, all entries
are positive. This is because all currencies load on the Dollar factor in the same direction,
which is the most important traded risk factor in the cross-section. Second, the cross-
multiplier between currencies on the long leg of the Carry trade (e.g., AUD, CAD, GBP)
and those on the short leg (e.g., CHF, EUR, JPY) is generally smaller. This modest cross-
multiplier owes to opposite beta loadings with respect to the Carry factor, which makes
currencies in one of these two groups hedge currencies in the other group in risk exposures to
the Carry factor. In IO, such phenomena are typically referred to as complementarity. Third,
we note that although EUR and JPY are both low-interest-rate currencies, we estimate a
rather small cross-multiplier because the two currencies are on the opposite side of the Euro-
Yen factor. This result suggests that EUR and JPY are not entirely substitutable.

Moreover, although we analyze traded FX factors constructed based on the six major
currencies and USD, we recover meaningful cross-multiplier in other currencies due to these
currencies’ loadings on the three traded FX factors. As a sanity check of our methodology,
we examine the cross-multiplier for HKD, a currency pegged to USD within a narrow band
of 1%. While we do not use this pegged information in our estimation, the estimated cross-
multipliers in the entire column and row associated with HKD are close to zero. This minimal
impact reflects the nature of a pegged currency: its own demand shocks have negligible risk
implications for other currencies, and its exchange rate relative to USD is largely unaffected
by demand shocks in other currencies.

6.2 Cross-Asset-Class Multiplier

If other asset classes load on the traded FX factors, demand shocks can propagate through
common exposures. We analyze six non-FX asset classes: credit default swap (CDS), com-
modities (Comm), corporate bonds (CorpBond), equities (Equity), equity options (Opt),
and US Treasury bonds (UST).43 Similar to Figure 2, we regress the monthly excess returns
of each asset class from 2000-02 to 2023-12 on the Dollar, Carry, and Euro-Yen returns, and
present the R2 decomposition in Figure 3.44,45

43We construct the return of each asset class as the equal-weighted average return of all available portfolios;
see also Section 3.3.

44By construction, the correlation among weekly factor returns is zero. The correlation among monthly
factor returns is close to zero. We report the incremental R2 by adding the factors sequentially in the order
of the Dollar, the Carry, and the Euro-Yen.

45We also explore the explanatory power of traded FX factors for other assets’ returns outside crisis
periods (e.g., GFC, Covid). The results, shown in Figure SA4 of the Supplemental Appendix, are largely
similar.
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Figure 3: Decomposition of Asset-Class Returns Explained by Traded FX
Factors

Notes: This figure plots the R2 of regressing individual asset’s monthly excess returns against the returns of
the Dollar, the Carry, and the Euro-Yen factors in the time series. It plots the marginal R2 values attributed
to each factor and labels the total R2. The positive and negative signs illustrate the direction of the beta
loadings. The estimation period is from 2000-02 to 2023-12. The returns from CDS are available starting in
2007-04. The returns from Opt end in 2022-12.

The three traded FX factors jointly explain between 15% (commodities) and 41% (equi-
ties) of the returns in the six non-FX asset classes we examine. Interestingly, while the Dollar
factor is statistically significant across all six asset classes, it is least important in explaining
the return of U.S. Treasury bonds (Treasurys).46 Moreover, while all other asset classes load
positively on the Carry factor, Treasurys load negatively. This contrast suggests that large
shocks to the Carry factor could drive divergent price movements between Treasurys and
other assets. Finally, while the Euro-Yen factor is less prominent in non-FX asset classes, it
explains a non-negligible share of returns in corporate bonds and equities.

Similar to Table 7, we report cross-multipliers between asset classes in Table 8.47 Ex-
amining the last column of Table 8, we recover two salient features of Treasurys while using
only assets’ factor loadings and factors’ price sensitivity to risks. First, the price response to
a demand shock is smallest for Treasurys, corroborating the observation that the Treasury
market is deep and liquid. Second, Treasurys uniquely exhibit negative cross-multipliers
with most other asset classes. A $1 billion demand shock to Treasurys raises their price but
depresses the price of other assets, reflecting Treasurys’ “safe haven” property. Our estima-

46One possible reason for this attenuated connection is that foreign investors hedge a substantial amount
of the USD FX risks associated with their securities holdings, especially bonds (Du and Huber, 2024).

47The cross-multiplier between the traded FX factors and these six non-FX asset classes are reported in
Table SA4 of the Supplemental Appendix.
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Table 8: Cross multiplier Between Assets Due to Traded FX Factors

CDS Comm CorpBond Equity Opt UST

CDS 2.4 3.5 3.2 5.8 4.7 -0.5
Comm 8.9 6.0 9.5 7.7 0.7
CorpBond 4.8 8.3 6.5 -0.2
Equity 14.6 11.4 -0.9
Opt 9.3 -0.6
UST 0.7

Notes: This table uses Proposition 2, the estimated factor-level price sensitivity to risks λk from
Table 5, and the beta loadings of assets to factors (signs illustrated in Figure 3) to compute asset-level
cross-multiplier. Each entry represents the percentage price change in bps of a row (column) asset, as
induced by a $1 billion trading demand shock into a column (row) asset, holding the demand shocks in
all other assets equal. As noted after Proposition 2, the model-implied cross-multiplier is symmetric,
so we report only the upper half.

tion captures this behavior because only Treasurys load negatively on the commonly priced
Carry factor.

We raise two cautions in interpreting our estimated cross-asset multiplier. First, our
estimates capture only the price response driven by exposure to the three traded FX factors.
They may not represent the total price response to a $1 demand shock into an asset, as
these assets may also load on other traded risk factors that we do not capture. Second,
by using λk from the traded FX factors to inform multipliers in other asset markets, our
analysis implicitly assumes that the marginal intermediaries are the same across different
markets. Departures from this assumption may alter the magnitude but not the mechanism
of demand propagation.

7 Conclusion

In conclusion, this paper studies the propagation of demand shocks through traded risk
factors. If asset prices respond to risks and marginal agents can diversify risks across assets,
then demand shocks transmit by affecting non-diversifiable risks, as captured by traded risk
factors. We identify the most important traded risk factors by extending the concept of
priced non-diversifiable risks (Ross, 1976) to a representative intermediary framework (He
and Krishnamurthy, 2017) and developing a method that integrates trading and returns
data. We find that three factors — the Dollar, Carry, and Euro-Yen — jointly account for
90% of non-diversifiable FX trading risks. These factors are priced unconditionally and,
using instrumental variables, we estimate these factors’ price sensitivity to trading-induced
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risk. Finally, combining factors’ price sensitivity with assets’ factor exposure, we link trading
quantities to asset prices (Froot and Ramadorai, 2008; Koijen and Yogo, 2019) through risks,
deriving novel cross-asset price multipliers for a panel of 17 currencies and across 7 major
asset classes, underscoring the role of common risk exposure in driving cross-asset dynamics
(Haddad and Muir, 2021; Du, Hébert, and Huber, 2023).

A distinguishing feature of our paper is the use of factor-level price sensitivity to inform
cross-multipliers at both the currency and asset-class levels. At the heart of this cross-
asset demand transmission are three key elements: how demand shocks alter the amount
of non-diversifiable factor risks borne by marginal agents, how risk prices adjust to induce
agents to absorb these incremental risks, and how different assets are exposed to these risks.
By integrating these three elements, we uncover novel transmission patterns where demand
shocks in one market propagate across others with varying magnitudes and even directions.
As asset markets become increasingly interconnected, understanding how demand shocks
propagate through common risk exposure is crucial for predicting and managing systemic
market dynamics.
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A Appendix for Proofs

This appendix provides proofs omitted in the main text.

A.1 Solution for Traded Risk Factors

In this appendix, we present solutions for traded risk factors in Section 2.2.
We conduct Cholesky decomposition of var(r) as U⊤U. Then, we define gk = Ubk for

each factor k. Equation (1) implies that the factor-level flow is

qk = (b⊤
k var(r)bk)

−1b⊤
k var(r)f = (g⊤

k gk)
−1g⊤

k Uf . (A1)

Moreover, the sequential optimization problem (3) becomes

max
gk

(g⊤
k gk)

−1var(g⊤
k Uf) (A2)

s.t.g⊤
k gj = 0 for k ̸= j.

This becomes a standard PCA problem that is solved by the eigenvalue decomposition of the
matrix var(Uf) (Jolliffe, 1986). The eigenvectors are gk and the corresponding eigenvalues
are proportional to the fraction of explained variance. Once we obtain gk, the portfolio
weights are obtained by bk = U−1gk.

A.2 Proof of Proposition 1

Simplifying equation (7), we have

E

[
− exp

(
−

K∑
k=1

γkyk(b
⊤
k R−RF∆pk

)]

= − exp

[
−

K∑
k=1

(
γkykE[b⊤

k R]− γkRFyk∆pk − γ2
ky

2
kvar(b⊤

k R)/2
)]

, (A3)

where the last equality uses the fact that cov(b⊤
k R,b⊤

j R) = 0 for k ̸= j. Taking the first-
order condition with respect to yk and evaluating it at the optimal yk = −q̂k/µ, we obtain

∆pk =
var(b⊤

k R)γkq̂k/µ+ E[b⊤
k R]

RF

. (A4)

Using the fact that ∆pk = 0 when q̂k = 0, along with the assumption that var(r) = var(R),
we derive equation (8).
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A.3 Proof of Proposition 2

Because factors have uncorrelated returns by equation (3), we can project the return of any
currency n onto the factors and obtain

rn =
K∑
k=1

βn,kb
⊤
k r+ en, (A5)

where en is the idiosyncratic return of currency n that is uncorrelated with any factor b⊤
k r.

Hence, by the law of one price and equation (8), the price response of currency n is

∆p̂n =
K∑
k=1

βn,k∆pk =
K∑
k=1

λkq̂kvar(b⊤
k r)βn,k. (A6)

Therefore, we have

∂∆p̂n
∂q̂k

=
∂∆pk
∂q̂k

× ∂∆p̂n
∂∆pk

= λkvar(b⊤
k r)× βn,k. (A7)

Next, equation (6) implies that ∂q̂k/∂f̂m = βm,k. Hence, we have proved

∂∆p̂n

∂f̂m
=

K∑
k=1

∂q̂k

∂f̂m
× ∂∆p̂n

∂q̂k
=

K∑
k=1

βm,k × λkvar(b⊤
k r)× βn,k. (A8)
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Supplemental Appendix of
“Demand Propagation Through Traded Risk Factors”

A Invariance of Factors under Alternative Numeraire Currency

In this appendix, we prove that the factors constructed in Appendix A.1 remain unchanged
when we alter the numeraire currency used to measure demand shocks and returns.

Suppose we switch from using USD to the N -th currency as the numeraire. We denote
the demand shock from the N -th currency to the n-th currency as f̃n for n = 1, 2, . . . , N −1,
and the demand shock from the N -th currency to USD as f̃N . Recall that fn represents
the demand shock from USD to the n-th currency. Because each demand shock fn (for
n = 1, 2, . . . , N − 1) can be broken down into a component from USD to the N -th currency
and another from the N -th currency to the n-th currency, we can express this transformation
as follows:

f̃ = (f̃1, f̃2, . . . , f̃N−1, f̃N)
⊤ =

(
f1, f2, . . . , fN−1,−

N∑
n=1

fn

)⊤

= Cf , (SA1)

where we define the matrix

C :=



1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0

−1 −1 . . . −1 −1


. (SA2)

Similarly, returns are now measured relative to the N -th currency. Specifically, r̃n for
n = 1, 2, . . . , N −1 represents the return from borrowing at the N -th currency’s riskfree rate
to invest in the n-th currency’s riskfree rate. Similarly, r̃N denotes the return from borrowing
at the N -th currency’s riskfree rate to invest in the USD riskfree rate. The transformation
of returns can thus be described as follows:

r̃ = (r̃1, r̃2, . . . , r̃N−1, r̃N)
⊤ = (r1 − rN , r2 − rN , . . . , rN−1 − rN ,−rN)

⊤ = C⊤r. (SA3)

Now, we apply Appendix A.1 to analyze the factors using r̃ and f̃ . Specifically, the
variance of r̃, given by var(r̃) = C⊤var(r)C, can be decomposed as C⊤U⊤UC = Ũ⊤Ũ,
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where Ũ := UC. Subsequently, the eigenvalue decomposition is transformed to

Ũvar(f̃)Ũ⊤ = UCCvar(f)C⊤C⊤U⊤ = Uvar(f)U⊤, (SA4)

where we use the fact that CC = IN . This derivation reveals that the eigenvectors gk and
eigenvalues are invariant. The resulting portfolio weights under the new numeraire currency
are given by b̃k = Ũ−1gk = C−1U−1gk = C−1bk. Hence, the factor returns also remain
invariant, because b̃⊤

k r̃ = b⊤
k (C

−1)⊤C⊤r = b⊤
k r.

B Inclusion of Non-spot FX Derivatives Trading Flows

Foreign exchange trades can be executed in the spot market and in the derivatives market
of forwards and swaps. Trading in the derivatives market can expose the intermediary to
foreign exchange risk. Consider a customer-initiated trade of selling $100-worth of JPY
1-month forward against USD. In the absence of other trades, an intermediary who has
no capital, maintains a net neutral FX exposure, and serves as the counterparty in this
trade, must satisfy the obligation to deliver $100 in a month by setting aside $100/(1+ r$1M)

today, where r$1M is the 1-month USD risk-free rate. Similarly, the intermediary will sell
100/(1 + rJPY

1M ) of JPY today to both fund his USD purchase and to ensure FX neutrality
when he receives the promised delivery from the customer. To the intermediary, therefore,
a forward contract is no different from a spot transaction but for the fact that the amount
of implied FX exposure in a forward is less than its notional.

Because we are interested in measuring all the FX risks that intermediaries have to bear
by accommodating customer trading flows, we need to consider trading flows in both the spot
and the derivatives market.48 In this appendix, we explore the difference between trading
flows into the spot versus the derivatives market and the implications of using trading data
in only one of the two markets in our analysis.

We start by examining the observed trading flows into individual currencies. The triennial
survey conducted by the Bank of International Settlement (BIS) indicates that there is twice
as much trading flow in the FX derivatives market as in the spot market (Appendix Figure
SA1). Appendix Table SA1 reports the correlation between the net flow into the spot versus
the derivatives market for each of the six major currencies in our sample. The absolute
strength of the correlation ranges between 0.17 and 0.62, suggesting sizeable comovements
in trading flows between the spot and the derivatives FX market.

Comovements in observed trading flows could be induced by common risk factors that
48We treat swaps as a spot transaction plus a forward contract.
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Figure SA1: FX Daily Turnover Against USD

Notes: This figure plots the global daily volume of foreign exchange spot versus forward and FX swaps
transactions involving USD. Daily volume is calculated as the average of all trading days in April of the
survey year. The survey is conducted triennially from 2001 to 2022 by BIS.

Table SA1: Currency-Specific Correlation between Net Trading Flow in Spot vs.
Non-Spot Derivatives

AUD CAD CHF EUR GBP JPY
-0.48 0.17 -0.54 -0.39 -0.62 -0.35

Notes: This table reports the correlation between net flows into individual cur-
rencies in the spot market and in the non-spot derivatives market.

are present in both the spot and the derivatives market. If so, trading data from either
market alone should be sufficient to recover the traded FX risk factors. At the same time,
if there are strong comovements in trading flows to the traded FX factors, then relying on
data from only one market risks introducing measurement error in the estimation of price
sensitivity to risks.

In Appendix Table SA2, we compare the traded FX factors recovered separately from
the spot market and the non-spot derivatives market. The top row shows the correlation
between returns of factors estimated using only one of the individual markets. For the first
factor, the return correlation is close to 1, and this correlation is 77% for the second factor
and 73% for the third factor. Such pronounced relationships underscore the robustness of
the underlying factors and suggest that the same risk factors drive trading across the spot
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Table SA2: Correlation between Returns and Flows to Factors Estimated in
Different Samples

Factor 1 Factor 2 Factor 3
Return 0.99 0.77 0.73
Flow -0.51 -0.13 -0.35

Notes: This table reports the correlation between the re-
turns and flows to each of the top three traded risk factors
as estimated in the spot market versus in the non-spot
derivatives market.

and the derivatives market. The bottom row shows the correlation between flows to factors
estimated using only one of the individual markets. The correlations are -0.51, -0.13, and
-0.35 for the three factors, respectively.

The marked association between factor returns and factor flows points to the strength
and limitation of using only data in the spot market. On the one hand, the tight correlation
between factor returns constructed using data from individual markets shows that the spot
market alone is sufficient to recover the underlying risk factors because these factors drive
trading in both the spot and derivatives markets. On the other hand, using only data
from the spot market is likely insufficient for estimating these factors’ price sensitivity to
risks because the spot market data alone may not provide an appropriate measure of the
flow changes. Estimating price sensitivity to risks requires instrumenting for the flow that
induces the observed price change. As spot flows and derivatives flows are highly correlated,
it is empirically difficult to isolate variations in just the spot flow. Specifically, because factor
flows in the spot market are negatively correlated with factor flows in the derivatives market,
instrumenting for just the spot market will overestimate factor flows, biasing the estimate
to imply smaller price sensitivity to risks.

C Additional Figures and Tables
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Table SA3: Correlation Between Traded FX Factors in Full Sample vs.
Subsamples

Factor 1 Factor 2 Factor 3

Return Pre 2020 0.97 0.83 0.83
Post 2020 1.00 0.97 0.89

Flow Pre 2020 0.98 0.82 0.81
Post 2020 0.99 0.96 0.81

Notes: In this table, we report the correlation between returns and flows of the traded FX
factors constructed based on the full sample versus returns and flows of the traded FX factors
constructed based on different subsamples. Pre-2020 refers to the sample period from September
2012 to December 2019, while post-2020 refers to the sample period from January 2020 to
December 2023.

Table SA4: Cross-Multiplier between Traded FX Factors and Non-FX Asset
Classes

CDS Comm CorpBond Equity Opt UST

Dollar -2.0 -5.0 -2.8 -4.4 -4.4 -0.5
Carry 3.7 1.6 3.7 7.9 6.1 -2.3
Euro-Yen -2.5 -10.3 -7.3 -10.8 -6.6 -1.6

Notes: This table uses Proposition 2, the estimated factor-level price sensitivity to risks λk from Table 5,
and the beta loadings of assets to factors (signs illustrated in Figure 3) to compute cross-multiplier between
traded FX factors and six non-FX asset classes. Each entry represents the price movement in bps of a
column asset, as induced by a $1 billion demand shock into a traded FX factor.
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Figure SA2: Cumulative Flow by Investor Type to Traded FX Factors

(a) Dollar Factor

(b) Carry Factor

(c) Euro-Yen Factor

Notes: This figure displays the cumulative flows by customer type into the top three traded FX factors
between September 2012 and December 2023. The Net Total represents the net customer flows that Banks
(intermediaries) need to absorb. SA.6



Figure SA3: Reversion of Contemporaneous Price Response

Notes: This figure shows the cumulative price responses for the traded FX factors. These responses, measured
per billion of demand shocks, are estimated by regressing the return from week t−1 to t+h (for h = 0, 1, 2, 3, 4)
on the instrumented flow from week t−1 to t. The shaded area represents the 95% confidence interval based
on Newey-West standard errors with the bandwidth selected according to the Newey and West (1994)
procedure.

Figure SA4: Decomposition of Asset-Class Returns Explained by Traded FX
Factors Outside of Crises

Notes: This figure decomposes the returns of individual assets into the Dollar, the Carry, and the Euro-Yen
factors. The decomposition is achieved by regressing asset class monthly average excess return between 2000-
02 and 2023-12 on returns from the three traded FX factors. We exclude the GFC (2007-07 through 2010-07)
and COVID (2020-01 through 2020-06) period. The returns from CDS are available starting 2007-04. The
returns from Opt end in 2022-12. It reports both the marginal R2 values attributed to each factor and the
total R2. The positive and negative signs illustrate the direction of the beta loadings.
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